Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 161: 4-14, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33561524

ABSTRACT

Pancreatic cancer (PC) is one of the deadliest cancers with a very short rate of survival and commonly without symptoms in its early stage. This absence of symptoms can lead to a late diagnosis associated with an advanced metastasis process, for which therapy is not effective. Although with extensive research in this field, the 5-year survival rate has not increased significantly. Notwithstanding, novel insights on risk factors, genetic mutations and molecular mechanisms pave the way for novel therapeutics that urge with a significant part of PC patients presenting resistance to chemotherapy treatments. Exosomes are presented as a promising strategy, working as delivery systems, since they can transport and release their cargoes after fusing with the membrane of pancreatic cells. Exosomes present advantages over liposomes, being less toxic and reaching higher levels in the bloodstream, working as molecule carriers that can inhibit oncogenes, activating tumor suppressor genes and inducing immune responses as well as controlling cell growth. This review intends to provide an overview about the scientific and clinical studies regarding the entire process, from isolation and purification of exosomes, to their design and transformation into anti-oncogenic drug delivering systems, particularly to target PC cells.


Subject(s)
Drug Delivery Systems , Exosomes/metabolism , Pancreatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Drug Carriers/metabolism , Drug Design , Humans , Pancreatic Neoplasms
2.
Pharmacol Res ; 164: 105309, 2021 02.
Article in English | MEDLINE | ID: mdl-33212291

ABSTRACT

In the last decade, immunotherapy led to a paradigm shift in the treatment of numerous malignancies. Alongside with monoclonal antibodies blocking programmed cell death receptor-1 (PD-1)/PD-L1 and cytotoxic T- lymphocyte antigen 4 (CTLA-4) immune checkpoints, cell-based approaches such as CAR-T cells and dendritic cell (DC) vaccines have strongly contributed to pushing forward this thrilling field. While initial strategies were mainly focused on monotherapeutic regimens, it is now consensual that the combination of immunotherapies tackling multiple cancer hallmarks can result in superior clinical outcomes. Here, we review in depth the pharmacological combination of DC-based vaccines that boost tumour elimination by eliciting and expanding effector immune cells, with the PD-1 inhibitor Nivolumab that allows blocking key tumour immune escape mechanisms. This combination represents an important step in cancer therapy, with a significant enhancement in patient survival in several types of tumours, paving an important way in establishing combinatorial immunotherapeutic strategies as first-line treatments.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Cancer Vaccines/administration & dosage , Dendritic Cells/immunology , Immune Checkpoint Inhibitors/administration & dosage , Immunotherapy , Neoplasms/therapy , Nivolumab/administration & dosage , Animals , Combined Modality Therapy , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors
3.
Pharmaceutics ; 12(2)2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32075343

ABSTRACT

Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy.

4.
Front Immunol ; 11: 593363, 2020.
Article in English | MEDLINE | ID: mdl-33613517

ABSTRACT

Dendritic cell (DC)-based antitumor vaccines have proven to be a safe approach, but often fail to generate robust results between trials. Translation to the clinic has been hindered in part by the lack of standard operation procedures for vaccines production, namely the definition of optimal culture conditions during ex-vivo DC differentiation. Here we sought to compare the ability of three clinical grade serum-free media, DendriMACS, AIM-V, and X-VIVO 15, alongside with fetal bovine serum-supplemented Roswell Park Memorial Institute Medium (RPMI), to support the differentiation of monocyte-derived DCs (Mo-DCs). Under these different culture conditions, phenotype, cell metabolomic profiles, response to maturation stimuli, cytokines production, allogenic T cell stimulatory capacity, as well as priming of antigen-specific CD8+ T cells and activation of autologous natural killer (NK) cells were analyzed. Immature Mo-DCs differentiated in AIM-V or X-VIVO 15 presented lower levels of CD1c, CD1a, and higher expression of CD11c, when compared to cells obtained with DendriMACS. Upon stimulation, only AIM-V or X-VIVO 15 DCs acquired a full mature phenotype, which supports their enhanced capacity to polarize T helper cell type 1 subset, to prime antigen-specific CD8+ T cells and to activate NK cells. CD8+ T cells and NK cells resulting from co-culture with AIM-V or X-VIVO 15 DCs also showed superior cytolytic activity. 1H nuclear magnetic resonance-based metabolomic analysis revealed that superior DC immunostimulatory capacities correlate with an enhanced catabolism of amino acids and glucose. Overall, our data highlight the impact of critically defining the culture medium used in the production of DCs for clinical application in cancer immunotherapy. Moreover, the manipulation of metabolic state during differentiation could be envisaged as a strategy to enhance desired cell characteristics.


Subject(s)
Batch Cell Culture Techniques , Culture Media, Serum-Free , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunotherapy , Primary Cell Culture/methods , Batch Cell Culture Techniques/methods , Batch Cell Culture Techniques/standards , Biomarkers , Cell Differentiation , Cytokines/metabolism , Cytotoxicity Tests, Immunologic , Dendritic Cells/cytology , Humans , Immunophenotyping , Immunotherapy/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Phagocytosis , Primary Cell Culture/standards
5.
J Immunother Cancer ; 7(1): 238, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31484548

ABSTRACT

Dendritic cells (DCs) are central players in the immune system, with an exquisite capacity to initiate and modulate immune responses. These functional characteristics have led to intense research on the development of DC-based immunotherapies, particularly for oncologic diseases. During recent decades, DC-based vaccines have generated very promising results in animal studies, and more than 300 clinical assays have demonstrated the safety profile of this approach. However, clinical data are inconsistent, and clear evidence of meaningful efficacy is still lacking. One of the reasons for this lack of evidence is the limited functional abilities of the used ex vivo-differentiated DCs. Therefore, alternative approaches for targeting and modulating endogenous DC subpopulations have emerged as an attractive concept. Here, we sought to revise the evolution of several strategies for the in situ mobilization and modulation of DCs. The first approaches using chemokine-secreting irradiated tumor cells are addressed, and special attention is given to the cutting-edge injectable bioengineered platforms, programmed to release chemoattractants, tumor antigens and DC maturating agents. Finally, we discuss how our increasing knowledge of DC biology, the use of neoantigens and their combination with immune checkpoint inhibitors can leverage the refinement of these polymeric vaccines to boost their antitumor efficacy.


Subject(s)
Biocompatible Materials/chemistry , Cancer Vaccines/immunology , Cellular Reprogramming , Dendritic Cells/immunology , Drug Delivery Systems , Immunotherapy/methods , Neoplasms/therapy , Animals , Biocompatible Materials/administration & dosage , Humans , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...