Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 337: 122353, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38104862

ABSTRACT

AIMS: Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS: C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS: Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE: In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.


Subject(s)
Alkaloids , Neuroprotective Agents , Sepsis-Associated Encephalopathy , Male , Mice , Animals , Sepsis-Associated Encephalopathy/complications , Catalase , Matrix Metalloproteinase 9 , Neuroprotection , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Thiobarbituric Acid Reactive Substances , Brain-Derived Neurotrophic Factor , Interleukin-6 , Mice, Inbred C57BL , Alkaloids/pharmacology , Alkaloids/therapeutic use
2.
J Nutr Biochem ; 116: 109315, 2023 06.
Article in English | MEDLINE | ID: mdl-36921735

ABSTRACT

Immunometabolic changes in the liver and white adipose tissue caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet, sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanized on the 7th day. The HF diet decreased survival rate (58.3% vs. 76.2% C-Sp group), increased serum cytokine storm (IL-6 [1.41 ×; vs. HF-Sh], IL-1ß [1.37 ×; vs. C-Sp], TNF [1.34 ×; vs. C-Sp and 1.72 ×; vs. HF-Sh], IL-17 [1.44 ×; vs. HF-Sh], IL-10 [1.55 ×; vs. C-Sp and 1.41 ×; HF-Sh]), white adipose tissue inflammation (IL-6 [8.7 ×; vs. C-Sp and 2.4 ×; vs. HF-Sh], TNF [5 ×; vs. C-Sp and 1.7 ×; vs. HF-Sh], IL-17 [1.7 ×; vs. C-Sp], IL-10 [7.4 ×; vs. C-Sp and 1.3 ×; vs. HF-Sh]), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity [-81.7%; vs. HF-Sh]; increase MDA levels [82.8%; vs. HF-Sh], and hepatic IL-6 [1.9 ×; vs. HF-Sh], and TNF [1.3 × %; vs. HF-Sh]) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group livers. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.


Subject(s)
Interleukin-10 , Sepsis , Female , Mice , Animals , Interleukin-17 , Interleukin-6 , Tumor Necrosis Factor-alpha/metabolism , Diet, High-Fat/adverse effects , Sepsis/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...