Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Sel Evol ; 55(1): 14, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882689

ABSTRACT

BACKGROUND: In broiler breeding, genotype-by-environment interaction is known to result in a genetic correlation between body weight measured in bio-secure and commercial environments that is substantially less than 1. Thus, measuring body weights on sibs of selection candidates in a commercial environment and genotyping them could increase genetic progress. Using real data, the aim of this study was to evaluate which genotyping strategy and which proportion of sibs placed in the commercial environment should be genotyped to optimize a sib-testing breeding program in broilers. Phenotypic body weight and genomic information were collected on all sibs raised in a commercial environment, which allowed to retrospectively analyze different sampling strategies and genotyping proportions. RESULTS: Accuracies of genomic estimated breeding values (GEBV) obtained with the different genotyping strategies were assessed by computing their correlation with GEBV obtained when all sibs in the commercial environment were genotyped. Results showed that, compared to random sampling (RND), genotyping sibs with extreme phenotypes (EXT) resulted in higher GEBV accuracy across all genotyping proportions, especially for genotyping proportions of 12.5% or 25%, which resulted in correlations of 0.91 vs 0.88 for 12.5% and 0.94 vs 0.91 for 25% genotyped. Including pedigree on birds with phenotype in the commercial environment that were not genotyped increased accuracy at lower genotyping proportions, especially for the RND strategy (correlations of 0.88 vs 0.65 at 12.5% and 0.91 vs 0.80 at 25%), and a smaller but still substantial increase in accuracy for the EXT strategy (0.91 vs 0.79 for 12.5% and 0.94 vs 0.88 for 25% genotyped). Dispersion bias was virtually absent for RND if 25% or more birds were genotyped. However, GEBV were considerably inflated for EXT, especially when the proportion genotyped was low, which was further exacerbated if the pedigree of non-genotyped sibs was excluded. CONCLUSIONS: When less than 75% of all animals placed in a commercial environment are genotyped, it is recommended to use the EXT strategy, because it yields the highest accuracy. However, caution should be taken when interpreting the resulting GEBV because they will be over-dispersed. When 75% or more of the animals are genotyped, random sampling is recommended because it yields virtually no bias of GEBV and results in similar accuracies as the EXT strategy.


Subject(s)
Chickens , Genomics , Animals , Genotype , Chickens/genetics , Retrospective Studies , Body Weight/genetics
2.
Genet Sel Evol ; 46: 41, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25022768

ABSTRACT

BACKGROUND: The use of whole-genome sequence data can lead to higher accuracy in genome-wide association studies and genomic predictions. However, to benefit from whole-genome sequence data, a large dataset of sequenced individuals is needed. Imputation from SNP panels, such as the Illumina BovineSNP50 BeadChip and Illumina BovineHD BeadChip, to whole-genome sequence data is an attractive and less expensive approach to obtain whole-genome sequence genotypes for a large number of individuals than sequencing all individuals. Our objective was to investigate accuracy of imputation from lower density SNP panels to whole-genome sequence data in a typical dataset for cattle. METHODS: Whole-genome sequence data of chromosome 1 (1737 471 SNPs) for 114 Holstein Friesian bulls were used. Beagle software was used for imputation from the BovineSNP50 (3132 SNPs) and BovineHD (40 492 SNPs) beadchips. Accuracy was calculated as the correlation between observed and imputed genotypes and assessed by five-fold cross-validation. Three scenarios S40, S60 and S80 with respectively 40%, 60%, and 80% of the individuals as reference individuals were investigated. RESULTS: Mean accuracies of imputation per SNP from the BovineHD panel to sequence data and from the BovineSNP50 panel to sequence data for scenarios S40 and S80 ranged from 0.77 to 0.83 and from 0.37 to 0.46, respectively. Stepwise imputation from the BovineSNP50 to BovineHD panel and then to sequence data for scenario S40 improved accuracy per SNP to 0.65 but it varied considerably between SNPs. CONCLUSIONS: Accuracy of imputation to whole-genome sequence data was generally high for imputation from the BovineHD beadchip, but was low from the BovineSNP50 beadchip. Stepwise imputation from the BovineSNP50 to the BovineHD beadchip and then to sequence data substantially improved accuracy of imputation. SNPs with a low minor allele frequency were more difficult to impute correctly and the reliability of imputation varied more. Linkage disequilibrium between an imputed SNP and the SNP on the lower density panel, minor allele frequency of the imputed SNP and size of the reference group affected imputation reliability.


Subject(s)
Cattle/classification , Cattle/genetics , Genomics/methods , Alleles , Animals , Chromosomes , Gene Frequency , Genetic Association Studies/veterinary , Genotype , Genotyping Techniques/veterinary , Linkage Disequilibrium , Male , Models, Genetic , Oligonucleotide Array Sequence Analysis/veterinary , Polymorphism, Single Nucleotide , Reproducibility of Results
3.
Genet Sel Evol ; 46: 57, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25927219

ABSTRACT

BACKGROUND: The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction. METHODS: Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we evaluated the following genomic prediction models: genome-enabled BLUP (GBLUP), ridge regression BLUP (RRBLUP), principal component analysis followed by ridge regression (RRPCA), BayesC and Bayesian stochastic search variable selection. Prediction accuracy was measured as the correlation between predicted breeding values and observed phenotypes divided by the square root of the heritability. The data used concerned laying hens with phenotypes for number of eggs in the first production period and known genotypes. The hens were from two closely-related brown layer lines (B1 and B2), and a third distantly-related white layer line (W1). Lines had 1004 to 1023 training animals and 238 to 240 validation animals. Training datasets consisted of animals of either single lines, or a combination of two or all three lines, and had 30 508 to 45 974 segregating single nucleotide polymorphisms. RESULTS: Genomic prediction models yielded 0.13 to 0.16 higher accuracies than pedigree-based BLUP. When excluding the line itself from the training dataset, genomic predictions were generally inaccurate. Use of multiple lines marginally improved prediction accuracy for B2 but did not affect or slightly decreased prediction accuracy for B1 and W1. Differences between models were generally small except for RRPCA which gave considerably higher accuracies for B2. Correlations between genomic predictions from different methods were higher than 0.96 for W1 and higher than 0.88 for B1 and B2. The greater differences between methods for B1 and B2 were probably due to the lower accuracy of predictions for B1 (~0.45) and B2 (~0.40) compared to W1 (~0.76). CONCLUSIONS: Multi-line genomic prediction did not affect or slightly improved prediction accuracy for closely-related lines. For distantly-related lines, multi-line genomic prediction yielded similar or slightly lower accuracies than single-line genomic prediction. Bayesian variable selection and GBLUP generally gave similar accuracies. Overall, RRPCA yielded the greatest accuracies for two lines, suggesting that using PCA helps to alleviate the "n ≪ p" problem in genomic prediction.


Subject(s)
Breeding , Chickens/genetics , Genomics/methods , Models, Genetic , Animals , Bayes Theorem , Eggs , Female , Genome , Genotype , Linear Models , Pedigree , Polymorphism, Single Nucleotide , Principal Component Analysis , Quantitative Trait, Heritable
4.
Genet Sel Evol ; 46: 52, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25928875

ABSTRACT

BACKGROUND: Genomic prediction requires estimation of variances of effects of single nucleotide polymorphisms (SNPs), which is computationally demanding, and uses these variances for prediction. We have developed models with separate estimation of SNP variances, which can be applied infrequently, and genomic prediction, which can be applied routinely. METHODS: SNP variances were estimated with Bayes Stochastic Search Variable Selection (BSSVS) and BayesC. Genome-enhanced breeding values (GEBV) were estimated with RR-BLUP (ridge regression best linear unbiased prediction), using either variances obtained from BSSVS (BLUP-SSVS) or BayesC (BLUP-C), or assuming equal variances for each SNP. Datasets used to estimate SNP variances comprised (1) all animals, (2) 50% random animals (RAN50), (3) 50% best animals (TOP50), or (4) 50% worst animals (BOT50). Traits analysed were protein yield, udder depth, somatic cell score, interval between first and last insemination, direct longevity, and longevity including information from predictors. RESULTS: BLUP-SSVS and BLUP-C yielded similar GEBV as the equivalent Bayesian models that simultaneously estimated SNP variances. Reliabilities of these GEBV were consistently higher than from RR-BLUP, although only significantly for direct longevity. Across scenarios that used data subsets to estimate GEBV, observed reliabilities were generally higher for TOP50 than for RAN50, and much higher than for BOT50. Reliabilities of TOP50 were higher because the training data contained more ancestors of selection candidates. Using estimated SNP variances based on random or non-random subsets of the data, while using all data to estimate GEBV, did not affect reliabilities of the BLUP models. A convergence criterion of 10(-8) instead of 10(-10) for BLUP models yielded similar GEBV, while the required number of iterations decreased by 71 to 90%. Including a separate polygenic effect consistently improved reliabilities of the GEBV, but also substantially increased the required number of iterations to reach convergence with RR-BLUP. SNP variances converged faster for BayesC than for BSSVS. CONCLUSIONS: Combining Bayesian variable selection models to re-estimate SNP variances and BLUP models that use those SNP variances, yields GEBV that are similar to those from full Bayesian models. Moreover, these combined models yield predictions with higher reliability and less bias than the commonly used RR-BLUP model.


Subject(s)
Breeding , Cattle/genetics , Genomics/methods , Models, Genetic , Polymorphism, Single Nucleotide , Animals , Bayes Theorem , Genome , Male , Quantitative Trait Loci , Regression Analysis , Stochastic Processes
5.
BMC Proc ; 5 Suppl 3: S5, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21624175

ABSTRACT

BACKGROUND: Genomic selection is particularly beneficial for difficult or expensive to measure traits. Since multi-trait selection is an important tool to deal with such cases, an important question is what the added value is of multi-trait genomic selection. METHODS: The simulated dataset, including a quantitative and binary trait, was analyzed with four univariate and bivariate linear models to predict breeding values for juvenile animals. Two models estimated variance components with REML using a numerator (A), or SNP based relationship matrix (G). Two SNP based Bayesian models included one (BayesA) or two distributions (BayesC) for estimated SNP effects. The bivariate BayesC model sampled QTL probabilities for each SNP conditional on both traits. Genotypes were permuted 2,000 times against phenotypes and pedigree, to obtain significance thresholds for posterior QTL probabilities. Genotypes were permuted rather than phenotypes, to retain relationships between pedigree and phenotypes, such that polygenic effects could still be estimated. RESULTS: Correlations between estimated breeding values (EBV) of different SNP based models, for juvenile animals, were greater than 0.93 (0.87) for the quantitative (binary) trait. Estimated genetic correlation was 0.71 (0.66) for model G (A). Accuracies of breeding values of SNP based models were for both traits highest for BayesC and lowest for G. Accuracies of breeding values of bivariate models were up to 0.08 higher than for univariate models.The bivariate BayesC model detected 14 out of 32 QTL for the quantitative trait, and 8 out of 22 for the binary trait. CONCLUSIONS: Accuracy of EBV clearly improved for both traits using bivariate compared to univariate models. BayesC achieved highest accuracies of EBV and was also one of the methods that found most QTL. Permuting genotypes against phenotypes and pedigree in BayesC provided an effective way to derive significance thresholds for posterior QTL probabilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...