Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Spine Surg ; 6(1): 33-48, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32309644

ABSTRACT

BACKGROUND: In lumbar fusion surgery, intervertebral spacer cages made of silicon nitride (Si3N4) ceramic are an available option among other biomaterials. While the surface chemistry of Si3N4 is known to favor bone fusion, large-scale clinical studies attesting to its efficacy are lacking. This multicenter retrospective study compared lumbar fusion outcomes for Si3N4 cages to previously reported data for other cage materials. METHODS: Pre-operative patient demographics, comorbidities, changes in visual analog scale (ΔVAS) pain scores, complications, adverse events, and secondary surgical interventions (SSI) were compiled from the records of 450 patients who underwent Si3N4 lumbar spinal fusion at four separate U.S. surgical centers. For comparison, MEDLINE/PubMed and Google Scholar searches identified studies reporting similar outcomes for other biomaterials. A total of 1,025 patients from 26 cohorts reported in 14 publications met inclusion criteria for this control group. RESULTS: Overall, the mean last-follow-up for all patients was 341±293 days (11.4±9.8 months), with the longest follow-up being 6.4 years. Patients with Si3N4 implants were similar in gender and age distribution to the control group but had higher BMI values (30.9±6.1 vs. 25.8±4.1, P<0.01) and lower tobacco use (15.8% vs. 30.0%, P<0.01). Both the Si3N4 and control groups showed significant improvements in VAS pain scores from preoperative to last follow-up. For the Si3N4 group, ΔVAS was 36.8±35.4 points compared to 37.6±22.5 points (P=0.63) for the metadata group. Complications and reoperations for the Si3N4 and the control groups were similar (i.e., 9.8% and 3.1% versus 12.4% and 2.9%, P=0.16 and P=0.84, respectively). CONCLUSIONS: Lumbar fusion with Si3N4 spacers compared favorably with the improvements reported with other commonly used biomaterial cages.

2.
J Spine Surg ; 5(4): 504-519, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32043001

ABSTRACT

BACKGROUND: Intervertebral spacers made of silicon nitride (Si3N4) are currently used in cervical and thoracolumbar fusion. While basic science data demonstrate several advantages of Si3N4 over other biomaterials, large-scale clinical results on its safety and efficacy are lacking. This multicenter retrospective study examined outcomes for anterior cervical discectomy and fusion (ACDF) using Si3N4 cages. Results were compared to compiled metadata for other ACDF materials. METHODS: Pre-operative patient demographics, comorbidities, changes in visual analog scale (VAS) pain scores, complications, adverse events, and secondary surgical interventions were collected from the medical records of 860 patients who underwent Si3N4 ACDF at four surgical centers. For comparison, MEDLINE/PubMed and Google Scholar searches were performed for ACDF using other cage or spacer materials. Nine studies with 13 cohorts and 736 patients met the inclusion criteria for this control group. RESULTS: Overall, the mean last-follow-up for all patients was 319±325 days (10.6±10.8 months), with the longest follow-up being 6.5 years. In comparison to the metadata, patients from the Si3N4 groups were older (57.9±12.2 vs. 56.8±11.1 y, P=0.06) and had higher BMI values (30.0±6.3 vs. 28.1±6.5, P<0.01), but gender and smoking were not different. The Si3N4 patients reported significant improvements in VAS pain scores at last follow-up (i.e., pre-op of 71.0±22.1 vs. follow-up of 36.4±31.5, P<0.01). Although both preoperative and last-follow-up pain scores were higher for Si3N4 patients than the control, the overall change in scores (ΔVAS) was similar. From pre-op to last-follow up, ΔVAS values were 35.4±34.3 for patients receiving the Si3N4 implants versus 34.4±27.3 for patients from the meta-analysis (P=0.56). The complication and reoperation rate for the Si3N4 and the metadata were also comparable (i.e., 7.39% and 0.31% versus 9.79% and 0%, P=0.17 and 0.25, respectively). CONCLUSIONS: ACDF outcomes using Si3N4 implants matched the clinical efficacy of other cage biomaterials.

3.
J Neurosurg Spine ; 22(2): 166-72, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25478820

ABSTRACT

OBJECT: Cortical trajectory screw constructs, developed as an alternative to pedicle screw fixation for the lumbar spine, have similar in vitro biomechanics. The possibility of one screw path having the ability to rescue the other in a revision scenario holds promise but has not been evaluated. The objective in this study was to investigate the biomechanical properties of traditional pedicle screws and cortical trajectory screws when each was used to rescue the other in the setting of revision. METHODS: Ten fresh-frozen human lumbar spines were instrumented at L3-4, 5 with cortical trajectory screws and 5 with pedicle screws. Construct stiffness was recorded in flexion/extension, lateral bending, and axial rotation. The L-3 screw pullout strength was tested to failure for each specimen and salvaged with screws of the opposite trajectory. Mechanical stiffness was again recorded. The hybrid rescue trajectory screws at L-3 were then tested to failure. RESULTS: Cortical screws, when used in a rescue construct, provided stiffness in flexion/extension and axial rotation similar to that provided by the initial pedicle screw construct prior to failure. The rescue pedicle screws provided stiffness similar to that provided by the primary cortical screw construct in flexion/extension, lateral bending, and axial rotation. In pullout testing, cortical rescue screws retained 60% of the original pedicle screw pullout strength, whereas pedicle rescue screws retained 65% of the original cortical screw pullout strength. CONCLUSIONS: Cortical trajectory screws, previously studied as a primary mode of fixation, may also be used as a rescue option in the setting of a failed or compromised pedicle screw construct in the lumbar spine. Likewise, a standard pedicle screw construct may rescue a compromised cortical screw track. Cortical and pedicle screws each retain adequate construct stiffness and pullout strength when used for revision at the same level.


Subject(s)
Biomechanical Phenomena , Lumbar Vertebrae/surgery , Lumbosacral Region/surgery , Pedicle Screws , Humans , Lumbar Vertebrae/pathology , Lumbosacral Region/pathology , Materials Testing , Range of Motion, Articular/physiology , Rotation , Spinal Fusion/methods
SELECTION OF CITATIONS
SEARCH DETAIL