Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15713, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977811

ABSTRACT

Matching of various chalcogenide films shows the advantage of delivering multilayer heterostructures whose physical properties can be tuned with respect to the ones of the constituent single films. In this work, (Ge-Sb-Te)-based heterostructures were deposited by radio frequency sputtering on Si(100) substrates and annealed up to 400 °C. The as-deposited and annealed samples were studied by means of X-ray fluorescence, X-ray diffraction, scanning transmission electron microscopy, electron energy loss spectroscopy and Raman spectroscopy. The heterostructures, combining thermally stable thin layers (i. e. Ge-rich Ge5.5Sb2Te5, Ge) and films exhibiting fast switching dynamics (i. e. Sb2Te3), show, on the one side, higher crystallization-onset temperatures than the standard Ge2Sb2Te5 alloy and, on the other side, none to minimal Ge-segregation.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35745340

ABSTRACT

The morphological, structural, and electrical properties of as-grown and annealed Ge2Sb2Te5 (GST) layers, deposited by RF-sputtering on flexible polyimide, were studied by means of optical microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, and electrical characterization. The X-ray diffraction annealing experiments showed the structural transformation of GST layers from the as-grown amorphous state into their crystalline cubic and trigonal phases. The onset of crystallization of the GST films was inferred at about 140 °C. The vibrational properties of the crystalline GST layers were investigated via Raman spectroscopy with mode assignment in agreement with previous works on GST films grown on rigid substrates. The electrical characterization revealed a good homogeneity of the amorphous and crystalline trigonal GST with an electrical resistance contrast of 8 × 106.

SELECTION OF CITATIONS
SEARCH DETAIL
...