Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
NPJ Microgravity ; 3: 25, 2017.
Article in English | MEDLINE | ID: mdl-29046893

ABSTRACT

This work presents a technique for the study and measurement of the interfacial energies of solid-liquid-gas systems. The instrument and the evaluation method for the measurements obtained by it, allow the analysis of the energy changes of sessile drops submitted to microgravity. A mathematical model based on the thermodynamic of wetting is applied to evaluate the interfacial energies as a function of the drop shape changes due to the effect of the release of gravitation during the experiment. The presented model bases on the thermodynamic equilibrium of the interfaces and not on the balance of bi-dimensional tensors on the contour line. For this reason, the model does not follow Young's equation as the current surface wetting characterization techniques usually do.

2.
J Mater Sci ; 47(5): 2078-2087, 2012.
Article in English | MEDLINE | ID: mdl-25983345

ABSTRACT

A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate polyester wettability according to ambient conditions by imparting stimuli-responsiveness from the microgel to the textile itself. Microgels consisted of pH/thermo-responsive microparticles of poly(N-isopropylacrylamide-co-acrylic acid) either alone or complexed with the pH-responsive natural polysaccharide chitosan. Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, ζ-potential measurements, and topographical analysis were used for surface characterization. Wettability of polyester textiles was assessed by dynamic wetting, water vapor transfer, and moisture regain measurements. One of the main findings showed that the polyester surface was rendered pH-responsive, both in acidic and alkaline pH region, owing to the microgel incorporation. With a marked relaxation in their structure and an increase in their microporosity, the functionalized textiles exhibited higher water vapor transfer rates both at 20 and 40 °C, and 65% relative humidity compared with the reference polyester. Also, at 40 °C, i.e., above the microgel Lower Critical Solution Temperature, the functionalized polyester textiles had lower moisture regains than the reference. Finally, the type of the incorporated microgel affected significantly the polyester total absorption times, with an up to 300% increase in one case and an up to 80% decrease in another case. These findings are promising for the development of functional textile materials with possible applications in biotechnology, technical, and protective clothing.

3.
Nano Lett ; 11(6): 2522-6, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21557570

ABSTRACT

We fabricated [Co/Cu] multilayers revealing a giant magnetoresistance (GMR) effect on free-standing elastic poly(dimethylsiloxane) (PDMS) membranes. The GMR performance of [Co/Cu] multilayers on rigid silicon and on free-standing PDMS is similar and does not change with tensile deformations up to 4.5%. Mechanical deformations imposed on the sensor are totally reversible, due to the elasticity of the PDMS membranes. This remarkable performance upon stretching relies on a wrinkling of GMR layers on top of the PDMS membrane.


Subject(s)
Magnetics , Cobalt/chemistry , Copper/chemistry , Dimethylpolysiloxanes/chemistry , Electronics , Membranes, Artificial , Particle Size , Silicon/chemistry , Surface Properties
4.
Materials (Basel) ; 3(12): 5083-5096, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-28883370

ABSTRACT

For a comprehensive study of Sheet Molding Compound (SMC) surfaces, topographical data obtained by chromatic confocal imaging were submitted systematically for the development of a profile model to understand the formation of cavities on the surface. In order to qualify SMC surfaces and to predict their coatability, a characterization of cavities is applied. To quantify the effect of surface modification treatments, a new parameter (Surface Relative Smooth) is presented, applied and probed. The parameter proposed can be used for any surface modification of any solid material.

SELECTION OF CITATIONS
SEARCH DETAIL
...