Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Microb Biotechnol ; 17(3): e14426, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38497275

ABSTRACT

Fluctuations in redox conditions in bioprocesses can alter the end-products, reduce their concentration, and lengthen the process time. Electrofermentation enables rapid metabolic modulation of biosynthesis and allows control of redox imbalances in biofilm-based fermentation processes. In this study, electrofermentation is used to boost the production of the bacterial biopolymer poly-γ-glutamic acid (γ-PGA) from Bacillus subtilis ATCC 6051. When compared to control experiments (3.3 ± 0.99 g L-1 ), the application of an electrode potential E = 0.4 V versus Ag/AgCl results in a more than two-fold increase in the production of γ-PGA (9.13 ± 1.4 g L-1 ). Using an engineered B. subtilis strain, in which γ-PGA production is driven by isopropyl ß-d-1-thiogalactopyranoside, electrofermentation improves polymer concentrations from 15.4 ± 1.5 to 23.1 ± 1.6 versus g L-1 . These results confirm that electrofermentation conditions can be adopted to increase the concentration of γ-PGA and perhaps other extracellular biopolymers in industrial strains.


Subject(s)
Bacillus subtilis , Glutamic Acid , Polyglutamic Acid/analogs & derivatives , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Glutamic Acid/metabolism , Fermentation , Biofilms
2.
Microorganisms ; 12(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399704

ABSTRACT

The administration of Bacilli to dairy cows exerts beneficial effects on dry matter intake, lactation performance, and milk composition, but the rationale behind their efficacy is still poorly understood. In this work, we sought to establish whether cellulases and xylanases, among the enzymes secreted by B. subtilis, are involved in the positive effect exerted by Bacilli on ruminal performance. We took advantage of two isogenic B. subtilis strains, only differing in the secretion levels of those two enzymes. A multi-factorial study was conducted in which eight feed ingredients were treated in vitro, using ruminal fluid from cannulated cows, with cultures of the two strains conveniently grown in a growth medium based on inexpensive waste. Feed degradability and gas production were assessed. Fiber degradability was 10% higher (p < 0.001) in feeds treated with the enzyme-overexpressing strain than in the untreated control, while the non-overexpressing strain provided a 5% increase. The benefit of the fibrolytic enzymes was maximal for maize silage, the most recalcitrant feed. Gas production also correlated with the amount of enzymes applied (p < 0.05). Our results revealed that B. subtilis cellulases and xylanases effectively contribute to improving forage quality, justifying the use of Bacilli as direct-fed microbials to increase animal productivity.

3.
Front Plant Sci ; 15: 1344383, 2024.
Article in English | MEDLINE | ID: mdl-38390302

ABSTRACT

Water stress brought about by climate change is among the major global concerns threatening food security. Rice is an important staple food which requires high water resources. Being a semi-aquatic plant, rice is particularly susceptible to drought. The aim of this work was to develop techniques directed to promote rice resilience to water deprivation stress during germination by implementing specific seed priming treatments. Five popular Italian rice varieties were subjected to priming treatments using novel, sustainable solutions, like poly-gamma-glutamic acid (γ-PGA), denatured γ-PGA (dPGA), and iron (Fe) pulsing, alone or in combination. The effect of the developed priming methods was tested under optimal conditions as well as under water deprivation stress imposed by polyethylene glycol (PEG) treatments. The priming efficacy was phenotypically determined in terms of germination behavior by measuring a series of parameters (germinability, germination index, mean germination time, seed vigor index, root and shoot length, germination stress tolerance index). Biochemical analyses were carried out to measure the levels of iron uptake and accumulation of reactive oxygen species (ROS). Integrative data analyses revealed that the rice varieties exhibited a strong genotype- and treatment-specific germination behavior. PEG strongly inhibited germination while most of the priming treatments were able to rescue it in all varieties tested except for Unico, which can be defined as highly stress sensitive. Molecular events (DNA repair, antioxidant response, iron homeostasis) associated with the transition from seed to seedling were monitored in terms of changes in gene expression profiles in two varieties sensitive to water deprivation stress with different responses to priming. The investigated genes appeared to be differentially expressed in a genotype-, priming treatment-, stress- and stage-dependent manner. The proposed seed priming treatments can be envisioned as sustainable and versatile agricultural practices that could help in addressing the impact of climate challenges on the agri-food system.

4.
Biotechnol Biofuels Bioprod ; 16(1): 57, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37005680

ABSTRACT

Engineering sustainable bioprocesses that convert abundant waste into fuels is pivotal for efficient production of renewable energy. We previously engineered an Escherichia coli strain for optimized bioethanol production from lactose-rich wastewater like concentrated whey permeate (CWP), a dairy effluent obtained from whey valorization processes. Although attractive fermentation performances were reached, significant improvements are required to eliminate recombinant plasmids, antibiotic resistances and inducible promoters, and increase ethanol tolerance. Here, we report a new strain with chromosomally integrated ethanologenic pathway under the control of a constitutive promoter, without recombinant plasmids and resistance genes. The strain showed extreme stability in 1-month subculturing, with CWP fermentation performances similar to the ethanologenic plasmid-bearing strain. We then investigated conditions enabling efficient ethanol production and sugar consumption by changing inoculum size and CWP concentration, revealing toxicity- and nutritional-related bottlenecks. The joint increase of ethanol tolerance, via adaptive evolution, and supplementation of small ammonium sulphate amounts (0.05% w/v) enabled a fermentation boost with 6.6% v/v ethanol titer, 1.2 g/L/h rate, 82.5% yield, and cell viability increased by three orders of magnitude. Our strain has attractive features for industrial settings and represents a relevant improvement in the existing ethanol production biotechnologies.

5.
ChemSusChem ; 16(8): e202202108, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36655933

ABSTRACT

l-Theanine (l-Th) was synthesized by simply mixing the reactants (l-glutamine and ethylamine in water) at 25 °C and Bacillus subtilis γ-glutamyl transferase (BsGGT) covalently immobilized on glyoxyl-agarose according to a methodology previously reported by our research group; neither buffers, nor other additives were needed. Ratio of l-glutamine (donor) to ethylamine (acceptor), pH, enzymatic units (IU), and reaction time were optimized (molar ratio of donor/acceptor=1 : 8, pH 11.6, 1 IU mL-1 , 6 h), furnishing l-Th in 93 % isolated yield (485 mg, 32.3 g L-1 ) and high purity (99 %), after a simple filtration of the immobilized biocatalyst, distillation of the volatiles (unreacted ethylamine) and direct lyophilization. Immobilized BsGGT was re-used (four reaction cycles) with 100 % activity retention. This enzymatic synthesis represents a straightforward, fast, high-yielding, and easily scalable approach to l-Th preparation, besides having a favorable green chemistry metrics.


Subject(s)
Bacillus subtilis , Glutamine , gamma-Glutamyltransferase , Ethylamines , Catalysis , Enzymes, Immobilized
6.
J Agric Food Chem ; 70(42): 13692-13699, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36149987

ABSTRACT

γ-Glutamyl-peptides are frequently endowed with biological activities. In this work, "kokumi peptides" such as γ-glutamyl-methionine (1) and γ-glutamyl-(S)-allyl-cysteine (2), as well as the neuroprotective γ-glutamyl-taurine (3) and the antioxidant ophthalmic acid (4), were synthesized through an enzymatic transpeptidation reaction catalyzed by the γ-glutamyl transferase from Bacillus subtilis (BsGGT) using glutamine as the γ-glutamyl donor. BsGGT was covalently immobilized on glyoxyl-agarose resulting in high protein immobilization yield and activity recovery (>95%). Compounds 1-4 were obtained in moderate yields (19-40%, 5-10 g/L) with a variable purity depending on the presence of the main byproduct (γ-glutamyl-glutamine, 0-16%). To achieve process intensification and better control of side reactions, the synthesis of 2 was moved from batch to continuous flow. The specific productivity was 1.5 times higher than that in batch synthesis (13.7 µmol/min*g), but it was not accompanied by a paralleled improvement of the impurity profile.


Subject(s)
Bacillus subtilis , gamma-Glutamyltransferase , gamma-Glutamyltransferase/chemistry , Bacillus subtilis/metabolism , Glutamine/metabolism , Sepharose , Cysteine , Antioxidants , Peptides , Taurine
7.
Plants (Basel) ; 11(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35336698

ABSTRACT

The market for nutraceutical molecules is growing at an impressive pace in all Western countries. A convenient source of bioactive compounds is found in vegetable waste products, and their re-use for the recovery of healthy biomolecules would increase the sustainability of the food production system. However, safe, cheap, and sustainable technologies should be applied for the recovery of these beneficial molecules, avoiding the use of toxic organic solvents or expensive equipment. The soil bacterium Bacillus subtilis is naturally endowed with several enzymes targeting complex vegetable polymers. In this work, a raw bacterial culture supernatant was used to assist in the extraction of bioactives using isothermal pressurization cycles. Besides a wild-type Bacillus subtilis strain, a new strain showing increased secretion of cellulases and xylanases, pivotal enzymes for the digestion of the plant cell wall, was also used. Results indicate that the recovery of compounds correlates with the amount of cellulolytic enzymes applied, demonstrating that the pretreatment with non-purified culture broth effectively promotes the release of bioactives from the vegetable matrix. Therefore, this approach is a valid and sustainable procedure for the recovery of bioactive compounds from food waste.

8.
Res Microbiol ; 172(6): 103877, 2021.
Article in English | MEDLINE | ID: mdl-34487843

ABSTRACT

The two-component system DegSU of Bacillus subtilis controls more than one hundred genes involved in several different cellular behaviours. Over the last four decades, the degU32Hy allele, supposedly encoding a constitutively active mutant of the response regulator DegU, was exploited to define the impact of this system on cell physiology. Those studies concluded that phosphorylated DegU (DegU∼P) induced degradative enzyme expression while repressing flagellar motility and competence. Recent experiments, however, demonstrated that flagella expression is enhanced by DegU∼P if SwrA, a protein only encoded by wild strains, is present. Yet, to promote motility, SwrA must interact with DegU∼P produced by a wild-type degU allele, as it cannot correctly cooperate with the mutant DegU32Hy protein. In this work, the impact of DegSU was reanalysed in the presence or absence of SwrA employing a DegS kinase mutant, degS200Hy, to force the activation of the TCS. Our results demonstrate that the role of SwrA in B. subtilis physiology is wider than expected and affects several other DegSU targets. SwrA reduces subtilisin, cellulases and xylanases production while, besides motility, it also positively modulates competence for DNA uptake, remarkably relieving the inhibition caused by DegU∼P alone and restoring transformability in degS200Hy strains.


Subject(s)
Bacterial Proteins/metabolism , Histidine Kinase/metabolism , Bacterial Proteins/genetics , Cellulase/metabolism , Genes, Bacterial , Histidine Kinase/genetics , Movement , Mutation , Polyglutamic Acid/analogs & derivatives , Polyglutamic Acid/biosynthesis , Signal Transduction , Subtilisin/genetics , Subtilisin/metabolism , Transformation, Bacterial , Xylosidases/metabolism
9.
Bioorg Chem ; 115: 105217, 2021 10.
Article in English | MEDLINE | ID: mdl-34364051

ABSTRACT

γ-Glutamyl derivatives of proteinogenic or modified amino acids raise considerable interest as flavor enhancers or biologically active compounds. However, their supply, on a large scale and at reasonable costs, remains challenging. Enzymatic synthesis has been recognized as a possible affordable alternative with respect to both isolation procedures from natural sources, burdened by low-yield and by the requirement of massive amount of starting material, and chemical synthesis, inconvenient because of the need of protection/deprotection steps. The E. coli γ-glutamyltransferase (Ec-GGT) has already been proposed as a biocatalyst for the synthesis of various γ-glutamyl derivatives. However, enzymatic syntheses using this enzyme usually provide the desired products in limited yield. Hydrolysis and autotranspeptidation of the donor substrate have been identified as the side reactions affecting the final yield of the catalytic process. In addition, experimental conditions need to be specifically adjusted for each acceptor substrate. Substrate specificity and the fine characterization of the activities exerted by the enzyme over time has so far escaped rationalization. In this work, reactions catalyzed by Ec-GGT between the γ-glutamyl donor glutamine and several representative acceptor amino acids have been finely analyzed with the identification of single reaction products over time. This approach allowed to rationalize the effect of donor/acceptor molar ratio on the outcome of the transpeptidation reaction and on the distribution of the different byproducts, inferring a general scheme for Ec-GGT-catalyzed reactions. The propensity to react of the different acceptor substrates is in agreement with recent findings obtained using model substrates and further supported by x-ray crystallography and will contribute to characterize the still elusive acceptor binding site of the enzyme.


Subject(s)
Escherichia coli/enzymology , Peptides/metabolism , gamma-Glutamyltransferase/metabolism , Biocatalysis , Dose-Response Relationship, Drug , Molecular Structure , Peptides/chemistry , Structure-Activity Relationship
10.
Materials (Basel) ; 14(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073496

ABSTRACT

Spinel phases, with unique and outstanding physical properties, are attracting a great deal of interest in many fields. In particular, MgFe2O4, a partially inverted spinel phase, could find applications in medicine thanks to the remarkable antibacterial properties attributed to the generation of reactive oxygen species. In this paper, undoped and Ag-doped MgFe2-xAgxO4 (x = 0.1 and 0.3) nanoparticles were prepared using microwave-assisted combustion and sol-gel methods. X-ray powder diffraction, with Rietveld structural refinements combined with micro-Raman spectroscopy, allowed to determine sample purity and the inversion degree of the spinel, passing from about 0.4 to 0.7 when Ag was introduced as dopant. The results are discussed in view of the antibacterial activity towards Escherichia coli and Staphylococcus aureus, representative strains of Gram-negative and Gram-positive bacteria. The sol-gel particles were more efficient towards the chosen bacteria, possibly thanks to the nanometric sizes of metallic silver, which were well distributed in the powders and in the spinel phase, with respect to microwave ones, that, however, acquired antibacterial activity after thermal treatment, probably due to the nucleation of hematite, itself displaying well-known antibacterial properties and which could synergistically act with silver and spinel.

11.
N Biotechnol ; 57: 55-66, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32247835

ABSTRACT

Whey permeate (WP) is a lactose-rich waste effluent, generated during cheese manufacturing and further valorization steps, such as protein extraction. The production of ethanol by WP fermentation has been proposed to increase cost-competitiveness of dairy waste processing. In previous work, the Escherichia coli W strain was selected for its efficient growth in dairy waste and it was engineered to convert lactose into ethanol as the main fermentation product from WP and concentrated WP (CWP). To improve its performance, here the lactate dehydrogenase, fumarate reductase and pyruvate formate lyase fermentative routes were disrupted, obtaining new deletion strains. In test tubes, growth and fermentation profiles obtained in standard laboratory media and CWP showed large differences, and were affected by oxygen, medium and ethanologenic gene expression level. Among the tested strains, the one with triple deletion was superior in both high-oxygen and low-oxygen test tube fermentations, in terms of ethanol titer, rate and yield. The improved performance was due to a lower inhibition by medium acidification rather than an improved ethanol flux. The parent and triple deletion strains showed similar performance indexes in pH-controlled bioreactor experiments. However, the deletion strain showed lower base consumption and residual waste, in terms of both dry matter and chemical oxygen demand after distillation. It thus represents a step towards sustainable dairy wastewater valorization for bioenergy production by decreasing process operation costs.


Subject(s)
Escherichia coli/metabolism , Fermentation , Lactose/biosynthesis , Metabolic Engineering , Waste Products/analysis , Whey/metabolism , Acetyltransferases/metabolism , L-Lactate Dehydrogenase/metabolism , Succinate Dehydrogenase/metabolism , Whey/chemistry
12.
Microb Cell Fact ; 18(1): 3, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30626384

ABSTRACT

BACKGROUND: Genome-scale metabolic models (GEMs) allow predicting metabolic phenotypes from limited data on uptake and secretion fluxes by defining the space of all the feasible solutions and excluding physio-chemically and biologically unfeasible behaviors. The integration of additional biological information in genome-scale models, e.g., transcriptomic or proteomic profiles, has the potential to improve phenotype prediction accuracy. This is particularly important for metabolic engineering applications where more accurate model predictions can translate to more reliable model-based strain design. RESULTS: Here we present a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO) model of Bacillus subtilis, which uses publicly available proteomic data and enzyme kinetic parameters for central carbon (CC) metabolic reactions to constrain the flux solution space. This model allows more accurate prediction of the flux distribution and growth rate of wild-type and single-gene/operon deletion strains compared to a standard genome-scale metabolic model. The flux prediction error decreased by 43% and 36% for wild-type and mutants respectively. The model additionally increased the number of correctly predicted essential genes in CC pathways by 2.5-fold and significantly decreased flux variability in more than 80% of the reactions with variable flux. Finally, the model was used to find new gene deletion targets to optimize the flux toward the biosynthesis of poly-γ-glutamic acid (γ-PGA) polymer in engineered B. subtilis. We implemented the single-reaction deletion targets identified by the model experimentally and showed that the new strains have a twofold higher γ-PGA concentration and production rate compared to the ancestral strain. CONCLUSIONS: This work confirms that integration of enzyme constraints is a powerful tool to improve existing genome-scale models, and demonstrates the successful use of enzyme-constrained models in B. subtilis metabolic engineering. We expect that the new model can be used to guide future metabolic engineering efforts in the important industrial production host B. subtilis.


Subject(s)
Bacillus subtilis/enzymology , Enzymes/metabolism , Models, Biological , Polyglutamic Acid/analogs & derivatives , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bioreactors , Carbon/metabolism , Electrophoresis, Polyacrylamide Gel , Enzymes/genetics , Gene Deletion , Genome, Bacterial , Kinetics , Metabolic Engineering , Polyglutamic Acid/analysis , Polyglutamic Acid/biosynthesis
13.
RSC Adv ; 9(60): 34699-34709, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-35530678

ABSTRACT

γ-Glutamylpeptides are compounds derived from the acylation of an amino acid or a short peptide by the γ-carboxyl carbon of the side chain of glutamic acid. Due to their altered chemico-physical and organoleptic properties, they may be interesting substitutes or precursors of parent compounds used in pharmaceutical, dietetic and cosmetic formulations. Some of them are naturally occurring flavor enhancers or are endowed with biological activities. Enzymatic approaches to the synthesis of γ-glutamyl derivatives based on the use of γ-glutamyltransferases (GGTs, EC 2.3.2.2) have been proposed, which should be able to alleviate the problems connected with the troublesome and low-yielding extraction from natural sources or the non-economical chemical synthesis, which requires protection/deprotection steps. With the aim of overcoming the current limitations in the use of GGTs as biocatalysts, a mutant GGT was investigated. The mutant GGT was obtained by inserting the active-site-covering lid loop of the E. coli GGT onto the structure of B. subtilis GGT. With respect to the wild-type enzyme, the mutant showed a more demanding substrate specificity and a low hydrolase activity. These results represent an attempt to correlate the structural features of a GGT to its different activities. However, the ability of the mutant enzyme to catalyze the subsequent addition of several γ-glutamyl units, inherited by the parent B. subtilis GGT, still represents a limitation to its full application as a biocatalyst for preparative purposes.

14.
Data Brief ; 21: 576-581, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30377645

ABSTRACT

γ-Glutamyltransferases (GGTs) are widespread, conserved enzymes that catalyze the transfer of the γ-glutamyl moiety from a donor substrate to water (hydrolysis) or to an acceptor amino acid (transpeptidation) through the formation of a γ-glutamyl enzyme intermediate. Although the vast majority of the known GGTs has a short sequence called lid-loop covering the glutamate binding site, Bacillus subtilis GGT and some other enzymes from Bacillus spp. lack the lid loop. In order to assess the possible role of the lid loop of GGTs in substrate selection, synthetic oligo-γ-glutamylglutamines containing up to three γ-glutamyl residues were used as model substrates. The activities of the enzymes under investigation were standardized with respect to a common reaction to ensure comparable results. The activity of an engineered mutant enzyme containing the amino acid sequence of the lid loop from Escherichia coli GGT inserted into the backbone of B. subtilis GGT was compared to that of the lid loop-deficient B. subtilis GGT and the lid loop-carrier E. coli GGT (Calvio et al., 2018) [1]. Here we report the experimental procedures for the synthesis of model substrates γ-glutamylglutamines through the method of the N-phtaloyl-L-glutamic acid anhydride and the spectral data of the synthetized compounds. The data obtained in the normalization procedure of the activities of the three enzymes are also reported.

15.
FEBS J ; 285(24): 4575-4589, 2018 12.
Article in English | MEDLINE | ID: mdl-30387270

ABSTRACT

The identification of new strategies to fight bacterial infections in view of the spread of multiple resistance to antibiotics has become mandatory. It has been demonstrated that several bacteria develop poly-γ-glutamic acid (γ-PGA) capsules as a protection from external insults and/or host defence systems. Among the pathogens that shield themselves in these capsules are Bacillus anthracis, Francisella tularensis and several Staphylococcus strains. These are important pathogens with a profound influence on human health. The recently characterised γ-PGA hydrolases, which can dismantle the γ-PGA-capsules, are an attractive new direction that can offer real hope for the development of alternatives to antibiotics, particularly in cases of multidrug resistant bacteria. We have characterised in detail the cleaving mechanism and stereospecificity of the enzyme PghL (previously named YndL) from Bacillus subtilis encoded by a gene of phagic origin and dramatically efficient in degrading the long polymeric chains of γ-PGA. We used X-ray crystallography to solve the three-dimensional structures of the enzyme in its zinc-free, zinc-bound and complexed forms. The protein crystallised with a γ-PGA hexapeptide substrate and thus reveals details of the interaction which could explain the stereospecificity observed and give hints on the catalytic mechanism of this class of hydrolytic enzymes.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Hydrolases/chemistry , Hydrolases/metabolism , Polyglutamic Acid/analogs & derivatives , Amino Acid Sequence , Crystallography, X-Ray , Humans , Models, Molecular , Polyglutamic Acid/metabolism , Protein Conformation , Sequence Homology
16.
Enzyme Microb Technol ; 114: 55-62, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29685354

ABSTRACT

γ-Glutamyltransferase (GGT) catalyzes the transfer of the γ-glutamyl moiety from a donor substrate such as glutathione to water (hydrolysis) or to an acceptor amino acid (transpeptidation) through the formation of a γ-glutamyl enzyme intermediate. The vast majority of the known GGTs has a short sequence covering the glutamate binding site, called lid-loop. Although being conserved enzymes, both B. subtilis GGT and the related enzyme CapD from B. anthracis lack the lid loop and, differently from other GGTs, both accept poly-γ-glutamic acid (γ-PGA) as a substrate. Starting from this observation, in this work the activity of an engineered mutant enzyme containing the amino acid sequence of the lid loop from E. coli GGT inserted into the backbone of B. subtilis GGT was compared to that of the lid loop-deficient B. subtilis GGT and the lid loop-carrier E. coli GGT. Results indicate that the absence of the lid loop seems not to be the sole structural feature responsible for the recognition of a polymeric substrate by GGTs. Nevertheless, time course of hydrolysis reactions carried out using oligo-γ-glutamyl glutamines as substrates showed that the lid loop acts as a gating structure, allowing the preferential selection of the small glutamine with respect to the oligomeric substrates. In this respect, the mutant B. subtilis GGT revealed to be more similar to E. coli GGT than to its wild-type counterpart. In addition, the transpeptidase activity of the newly produced mutant enzyme revealed to be higher with respect to that of both E. coli and wild-type B. subtilis GGT. These findings can be helpful in selecting GGTs intended as biocatalysts for preparative purposes as well as in designing mutant enzymes with improved transpeptidase activity.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/enzymology , gamma-Glutamyltransferase/chemistry , gamma-Glutamyltransferase/genetics , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Escherichia coli/genetics , Glutamine/metabolism , Hydrolysis , Protein Engineering , Substrate Specificity , gamma-Glutamyltransferase/metabolism
17.
Biol Proced Online ; 18: 6, 2016.
Article in English | MEDLINE | ID: mdl-26877712

ABSTRACT

BACKGROUND: Circular plasmid-mediated homologous recombination is commonly used for marker-less allelic replacement, exploiting the endogenous recombination machinery of the host. Common limitations of existing methods include high false positive rates due to mutations in counter-selection genes, and limited applicability to specific strains or growth media. Finally, solutions compatible with physical standards, such as the BioBrick™, are not currently available, although they proved to be successful in the design of other replicative or integrative plasmids. FINDINGS: We illustrate pBBknock, a novel BioBrick™-compatible vector for allelic replacement in Escherichia coli. It includes a temperature-sensitive replication origin and enables marker-less genome engineering via two homologous recombination events. Chloramphenicol resistance allows positive selection of clones after the first event, whereas a colorimetric assay based on the xylE gene provides a simple way to screen clones in which the second recombination event occurs. Here we successfully use pBBknock to delete the lactate dehydrogenase gene in E. coli W, a popular host used in metabolic engineering. CONCLUSIONS: Compared with other plasmid-based solutions, pBBknock has a broader application range, not being limited to specific strains or media. We expect that pBBknock will represent a versatile solution both for practitioners, also among the iGEM competition teams, and for research laboratories that use BioBrick™-based assembly procedures.

18.
PLoS One ; 10(7): e0130810, 2015.
Article in English | MEDLINE | ID: mdl-26158264

ABSTRACT

Poly-γ-glutamate (γ-PGA) is an industrially interesting polymer secreted mainly by members of the class Bacilli which forms a shield able to protect bacteria from phagocytosis and phages. Few enzymes are known to degrade γ-PGA; among them is a phage-encoded γ-PGA hydrolase, PghP. The supposed role of PghP in phages is to ensure access to the surface of bacterial cells by dismantling the γ-PGA barrier. We identified four unannotated B. subtilis genes through similarity of their encoded products to PghP; in fact these genes reside in prophage elements of B. subtilis genome. The recombinant products of two of them demonstrate efficient polymer degradation, confirming that sequence similarity reflects functional homology. Genes encoding similar γ-PGA hydrolases were identified in phages specific for the order Bacillales and in numerous microbial genomes, not only belonging to that order. The distribution of the γ-PGA biosynthesis operon was also investigated with a bioinformatics approach; it was found that the list of organisms endowed with γ-PGA biosynthetic functions is larger than expected and includes several pathogenic species. Moreover in non-Bacillales bacteria the predicted γ-PGA hydrolase genes are preferentially found in species that do not have the genetic asset for polymer production. Our findings suggest that γ-PGA hydrolase genes might have spread across microbial genomes via horizontal exchanges rather than via phage infection. We hypothesize that, in natural habitats rich in γ-PGA supplied by producer organisms, the availability of hydrolases that release glutamate oligomers from γ-PGA might be a beneficial trait under positive selection.


Subject(s)
Bacillus Phages/enzymology , Bacillus subtilis/virology , Genome, Microbial , Viral Proteins/metabolism , gamma-Glutamyl Hydrolase/metabolism , Amino Acid Sequence , Bacillus Phages/classification , Bacillus Phages/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Electrophoresis, Agar Gel , Genome, Bacterial/genetics , Molecular Sequence Data , Polyglutamic Acid/analogs & derivatives , Polyglutamic Acid/metabolism , Prophages/enzymology , Prophages/genetics , Sequence Homology, Amino Acid , Substrate Specificity , Viral Proteins/genetics , gamma-Glutamyl Hydrolase/genetics
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 953-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26736421

ABSTRACT

Whey is an abundant by-product of cheese production process and it is considered a special waste due to its high nutritional load and hypertrophic potential. Technologies for whey valorization are available. They can convert such waste into high-value products, like whey proteins. However, the remaining liquid (called permeate) is still considered as a polluting waste due to its high lactose concentration. The alcoholic fermentation of lactose into ethanol will simultaneously achieve two important goals: safe disposal of a pollutant waste and green energy production. This methodology paper illustrates the workflow carried out to design and realize an optimized microorganism that can efficiently perform the lactose-to-ethanol conversion, engineered via synthetic biology experimental and computational approaches.


Subject(s)
Biocatalysis , Biofuels , Cheese , Ethanol , Lactose , Synthetic Biology
20.
FEBS J ; 281(1): 232-45, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24279353

ABSTRACT

γ-Glutamyltransferases (γ-GTs) are heterodimeric enzymes that catalyze the transfer of a γ-glutamyl group from a donor species to an acceptor molecule in a transpeptidation reaction through the formation of an intermediate γ-glutamyl enzyme. In our search for a γ-GT from a generally recognized as safe microorganism suitable for the production of γ-glutamyl derivatives with flavor-enhancing properties intended for human use, we cloned and overexpressed the γ-GT from Bacillus subtilis. In this study, we report the behavior of B. subtilis γ-GT in reactions involving glutamine as the donor compound and various acceptor amino acids. The common thread emerging from our results is a strong dependence of the hydrolase, transpeptidase and autotranspeptidase activities of B. subtilis γ-GT on pH, also in relation to the pKa of the acceptor amino acids. Glutamine, commonly referred to as a poor acceptor molecule, undergoes rapid autotranspeptidation at elevated pH, affording oligomeric species, in which up to four γ-glutamyl moieties are linked to a single glutamine. Moreover, we found that D-glutamine is also recognized both as a donor and as an acceptor substrate. Our results prove that the B. subtilis γ-GT-catalyzed transpeptidation reaction is feasible, and the observed activities of γ-GT from B. subtilis could be interpreted in relation to the known ability of the enzyme to process the polymeric material γ-polyglutamic acid.


Subject(s)
Bacillus subtilis/enzymology , Glutaminase/metabolism , Glutamine/metabolism , Hydrolases/metabolism , Peptidyl Transferases/metabolism , gamma-Glutamyltransferase/metabolism , Humans , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...