Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Clin Med ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762990

ABSTRACT

BACKGROUND: Our aim was to determine the differences in short-term heart rate variability (HRV) between patients with metabolic syndrome (MS) and healthy controls. METHODS: We searched electronic databases for primary works with short-term HRV recordings (≤30 min) that made comparisons between individuals with MS versus healthy controls. This systematic review and meta-analysis (MA) was performed according to PRISMA guidelines and registered at PROSPERO (CRD42022358975). RESULTS: Twenty-eight articles were included in the qualitative synthesis and nineteen met the criteria for the MA. Patients with MS showed decreased SDNN (-0.36 [-0.44, -0.28], p < 0.001), rMSSD (-7.59 [-9.98, -5.19], p < 0.001), HF (-0.36 [-0.51, -0.20], p < 0.00001) and LF (-0.24 [-0.38, -0.1], p = 0.001). In subsequent subanalyses, we found a decrease in SDNN (-0.99 (-1.45, -0.52], p < 0.001), rMSSD (-10.18 [-16.85, -3.52], p < 0.01) and HF (-1.04 [-1.97, -0.1] p < 0.05) in women. In men, only LF showed a significant lower value (-0.26 [-0.5, -0.02], p < 0.05). We could not perform MA for non-linear variables. CONCLUSIONS: Patients with MS showed changes in time-domain analyses, with lower values in SDNN and rMSSD. Regarding frequency-domain analyses, MS patients showed a decrease in HF and LF When sex was used as a grouping variable, the MA was only possible in one of both sexes (men or women) in rMSSD and LF/HF. Lastly, when data for both men and women were available, subanalyses showed a different behavior compared to mixed analyses for SDNN, HF and LF, which might point towards a different impact of MS in men and women.

2.
J Cardiovasc Dev Dis ; 10(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37233170

ABSTRACT

BACKGROUND: Our aim was to determine the impact that metabolic syndrome (MS) produces in long-term heart rate variability (HRV), quantitatively synthesizing the results of published studies to characterize the cardiac autonomic dysfunction in MS. METHODS: We searched electronic databases for original research works with long-term HRV recordings (24 h) that compared people with MS (MS+) versus healthy people as a control group (MS-). This systematic review and meta-analysis (MA) was performed according to PRISMA guidelines and registered at PROSPERO (CRD42022358975). RESULTS: A total of 13 articles were included in the qualitative synthesis, and 7 of them met the required criteria to be included in the MA. SDNN (-0.33 [-0.57, 0.09], p = 0.008), LF (-0.32 [-0.41, -0.23], p < 0.00001), VLF (-0.21 [-0.31, -0.10], p = 0.0001) and TP (-0.20 [-0.33, -0.07], p = 0.002) decreased in patients with MS. The rMSSD (p = 0.41), HF (p = 0.06) and LF/HF ratio (p = 0.64) were not modified. CONCLUSIONS: In long-term recordings (24 h), SDNN, LF, VLF and TP were consistently decreased in patients with MS. Other parameters that could be included in the quantitative analysis were not modified in MS+ patients (rMSSD, HF, ratio LF/HF). Regarding non-linear analyses, the results are not conclusive due to the low number of datasets found, which prevented us from conducting an MA.

3.
Physiol Meas ; 43(6)2022 06 28.
Article in English | MEDLINE | ID: mdl-35609610

ABSTRACT

Objective. Detecting different cardiac diseases using a single or reduced number of leads is still challenging. This work aims to provide and validate an automated method able to classify ECG recordings. Performance using complete 12-lead systems, reduced lead sets, and single-lead ECGs is evaluated and compared.Approach. Seven different databases with 12-lead ECGs were provided during thePhysioNet/Computing in Cardiology Challenge2021, where 88 253 annotated samples associated with none, one, or several cardiac conditions among 26 different classes were released for training, whereas 42 896 hidden samples were used for testing. After signal preprocessing, 81 features per ECG-lead were extracted, mainly based on heart rate variability, QRST patterns and spectral domain. Next, a One-versus-Rest classification approach made of independent binary classifiers for each cardiac condition was trained. This strategy allowed each ECG to be classified as belonging to none, one or several classes. For each class, a classification model among two binary supervised classifiers and one hybrid unsupervised-supervised classification system was selected. Finally, we performed a 3-fold cross-validation to assess the system's performance.Main results. Our classifiers received scores of 0.39, 0.38, 0.39, 0.38, and 0.37 for the 12, 6, 4, 3 and 2-lead versions of the hidden test set with the Challenge evaluation metric (CM). Also, we obtained a meanG-score of 0.80, 0.78, 0.79, 0.79, 0.77 and 0.74 for the 12, 6, 4, 3, 2 and 1-lead subsets with the public training set during our 3-fold cross-validation.Significance. We proposed and tested a machine learning approach focused on flexibility for identifying multiple cardiac conditions using one or more ECG leads. Our minimal-lead approach may be beneficial for novel portable or wearable ECG devices used as screening tools, as it can also detect multiple and concurrent cardiac conditions.


Subject(s)
Atrial Fibrillation , Heart Diseases , Atrial Fibrillation/diagnosis , Electrocardiography/methods , Humans , Machine Learning , Signal Processing, Computer-Assisted
4.
Animals (Basel) ; 9(8)2019 Aug 18.
Article in English | MEDLINE | ID: mdl-31426570

ABSTRACT

Metabolic syndrome (MetS) has been linked to a higher prevalence of sudden cardiac death (SCD), but the mechanisms are not well understood. One possible underlying mechanism may be an abnormal modulation of autonomic activity, which can be quantified by analyzing heart rate variability (HRV). Our aim was to investigate the modifications of short-term HRV in an experimental rabbit model during the time-course of MetS development. NZW rabbits were randomly assigned to a control (n = 10) or a MetS group (n = 13), fed 28 weeks with control or high-fat, high-sucrose diets. After anesthesia, a 15-min ECG recording was acquired before diet administration and at weeks 14 and 28. We analyzed short RR time series using time-domain, frequency-domain and nonlinear analyses. A mixed-model factorial ANOVA was used for statistical analysis. Time-domain analysis showed a 52.4% decrease in the standard deviation of heart rate in animals from the MetS group at week 28, but no changes in the rest of parameters. In the frequency domain, we found a 9.7% decrease in the very low frequency and a 380.0% increase of the low frequency bands in MetS animals at week 28, whereas high frequency remained unchanged. Nonlinear analyses showed increased complexity and irregularity of the RR time series in MetS animals.

5.
Animals (Basel) ; 9(7)2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31330823

ABSTRACT

Obesity and metabolic syndrome (MetS) have become a growing problem for public health and clinical practice, given their increased prevalence due to the rise of sedentary lifestyles and excessive caloric intake from processed food rich in fat and sugar. There are several definitions of MetS, but most of them describe it as a cluster of cardiovascular and metabolic alterations such as abdominal obesity, reduced high-density lipoprotein (HDL) and elevated low-density lipoprotein (LDL) cholesterol, elevated triglycerides, glucose intolerance, and hypertension. Diagnosis requires three out of these five criteria to be present. Despite the increasing prevalence of MetS, the understanding of its pathophysiology and relationship with disease is still limited. Indeed, the pathological consequences of MetS components have been reported individually, but investigations that have studied the effect of the combination of MeS components on organ pathological remodeling are almost nonexistent. On the other hand, animal models are a powerful tool in understanding the mechanisms that underlie pathological processes such as MetS. In the first part of the review, we will briefly overview the advantages, disadvantages and pathological manifestations of MetS in porcine, canine, rodent, and rabbit diet-induced experimental models. Then, we will focus on the different dietary regimes that have been used in rabbits to induce MetS by means of high-fat, cholesterol, sucrose or fructose-enriched diets and their effects on physiological systems and organ remodeling. Finally, we will discuss the use of dietary regimes in different transgenic strains and special rabbit breeds.

6.
J Physiol Biochem ; 75(2): 173-183, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30887428

ABSTRACT

Metabolic syndrome (MetS) describes a condition associated with multiple diseases concomitantly such as diabetes, hypertension, obesity, and dyslipidemia. It has been linked with higher prevalence of cardiovascular disease, atrial fibrillation, and sudden cardiac death. One of the underlying mechanisms could be altered automaticity, which would reflect modifications of sinus node activity. These phenomena can be evaluated analyzing the components of heart rate variability (HRV). Our aim was to examine the modifications of sinus node variability in an isolated heart model of diet-induced obesity and MetS. Male NZW rabbits were randomly assigned to high-fat (HF, n = 8), control (HF-C, n = 7), high-fat, high-sucrose (HFHS, n = 9), and control (HFHS-C, n = 9) groups, fed with their respective diets during 18/28 weeks. After euthanasia, their hearts were isolated in a Langendorff system. We recorded 10-15 min of spontaneous activity. Short RR time series were analyzed, and standard HRV parameters were determined. One-way ANOVA, Kruskal-Wallis test, and bivariate correlation were used for statistical analysis (p < 0.05). We did find an increase in the complexity and irregularity of intrinsic pacemaker activity as shown by modifications of approximate entropy, sample entropy, minimum multiscale entropy, and complexity index in HFHS animals. Even though no differences were found in standard time and frequency-domain analyses, spectral heterogeneity increased in HFHS group. Animal weight and glucose intolerance were highly correlated with the modifications of intrinsic pacemaker variability. Finally, modifications of intrinsic HRV seemed to be reliant on the number of components of MetS present, given that only HFHS group showed significant changes towards an increased complexity and irregularity of intrinsic pacemaker variability.


Subject(s)
Heart Rate , Metabolic Syndrome/physiopathology , Obesity/physiopathology , Sinoatrial Node/physiopathology , Animals , Diet, High-Fat/adverse effects , Male , Metabolic Syndrome/etiology , Obesity/etiology , Rabbits , Time Factors
7.
J Vis Exp ; (134)2018 04 20.
Article in English | MEDLINE | ID: mdl-29733304

ABSTRACT

In recent years, obesity and metabolic syndrome (MetS) have become a growing problem for public health and clinical practice, given their increased prevalence due to the rise of sedentary lifestyles and unhealthy eating habits. Thanks to animal models, basic research can investigate the mechanisms underlying pathological processes such as MetS. Here, we describe the methods used to develop an experimental rabbit model of diet-induced MetS and its assessment. After a period of acclimation, animals are fed a high-fat (10% hydrogenated coconut oil and 5% lard), high-sucrose (15% sucrose dissolved in water) diet for 28 weeks. During this period, several experimental procedures were performed to evaluate the different components of MetS: morphological and blood pressure measurements, glucose tolerance determination, and the analysis of several plasma markers. At the end of the experimental period, animals developed central obesity, mild hypertension, pre-diabetes, and dyslipidemia with low HDL, high LDL, and an increase of triglyceride (TG) levels, thus reproducing the main components of human MetS. This chronic model allows new perspectives for understanding the underlying mechanisms in the progression of the disease, the detection of preclinical and clinical markers that allow the identification of patients at risk, or even the testing of new therapeutic approaches for the treatment of this complex pathology.


Subject(s)
Diet, High-Fat/methods , Metabolic Syndrome/etiology , Animals , Disease Models, Animal , Male , Metabolic Syndrome/pathology , Models, Theoretical , Rabbits
8.
Ann Transplant ; 22: 285-295, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28484204

ABSTRACT

BACKGROUND Cardioplegic arrest is a common procedure for many types of cardiac surgery, and different formulations have been proposed to enhance its cardio-protective effect. Hydrogen sulfide is an important signaling molecule that has cardio-protective properties. We therefore studied the cardio-protective effect of hydrogen sulfide in cardiac cell culture and its potential therapeutic use in combination with cardioplegia formulations. MATERIAL AND METHODS We added hydrogen sulfide donor GYY4137 to HL-1 cells to study its protective effect in nutrient starved conditions. In addition, we tested the potential use of GYY4137 when it is added into two different cardioplegia formulations: Cardi-Braun® solution and del Nido solution in an ex vivo Langendorff perfused rat hearts model. RESULTS We observed that eight-hour pre-treatment with GYY4137 significantly suppressed apoptosis in nutrient-starved HL-1 cells (28% less compared to untreated cells; p<0.05), maintained ATP content, and reduced protein synthesis. In ex vivo experiments, Cardi-Braun® and del Nido cardioplegia solutions supplemented with GYY4137 significantly reduced the pro-apoptotic protein caspase-3 content and preserved ATP content. Furthermore, GYY4137 supplemented cardioplegia solutions decreased the S-(5-adenosyl)-L-methionine/S-(adenosyl)-L-homocysteine ratio, reducing the oxidative stress in cardiac tissue. Finally, heart beating analysis revealed the preservation of the inter-beat interval and the heart rate in del Nido cardioplegia solution supplemented with GYY4137. CONCLUSIONS GYY4137 preconditioning preserved energetic state during starved conditions, attenuating the cardiomyocytes apoptosis in vitro. The addition of GYY4137 to cardioplegia solutions prevented apoptosis, ATP consumption, and oxidative stress in perfused rat hearts, restoring its electrophysiological status after cardiac arrest. These findings suggested that GYY4137 sulfide donor may improve the cardioplegia solution performance during cardiac surgery.


Subject(s)
Apoptosis/drug effects , Heart Arrest/metabolism , Heart/drug effects , Hydrogen Sulfide/pharmacology , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Adenosine Triphosphate/metabolism , Animals , Cardioplegic Solutions , Caspase 3/metabolism , Cell Line , Cells, Cultured , Male , Myocytes, Cardiac/metabolism , Rats , Rats, Wistar
9.
Sci Rep ; 7: 43217, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28240274

ABSTRACT

Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Electrophysiological Phenomena , Heart/physiopathology , Optical Imaging/methods , Animals , Costs and Cost Analysis , Models, Biological , Optical Imaging/economics , Spatio-Temporal Analysis , Swine
10.
Proc Natl Acad Sci U S A ; 113(46): E7250-E7259, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799555

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24-/- mouse model of HGPS. Challenge of Zmpste24-/- mice with the ß-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24-/- cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24-/- progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Cardiac Conduction System Disease/physiopathology , Progeria/physiopathology , Adolescent , Adult , Animals , Arrhythmias, Cardiac/metabolism , Calcium/physiology , Cardiac Conduction System Disease/metabolism , Child , Child, Preschool , Connexin 43/metabolism , Connexin 43/physiology , Female , Heart/physiology , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/physiology , Metalloendopeptidases/genetics , Metalloendopeptidases/physiology , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Nuclear Lamina/physiology , Progeria/metabolism , Sarcoplasmic Reticulum/physiology , Young Adult
11.
Clin Exp Pharmacol Physiol ; 43(11): 1062-1070, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27501159

ABSTRACT

JTV-519 is a 1,4-benzothiazepine derivative with multichannel effects that inhibits Ca2+ release from the sarcoplasmic reticulum and stabilizes the closed state of the ryanodine receptor, preventing myocardial damage and the induction of arrhythmias during Ca2+ overload. Mechanical stretch increases cellular Na+ inflow, activates the reverse mode of the Na+ /Ca2+ exchanger, and modifies Ca2+ handling and myocardial electrophysiology, favoring arrhythmogenesis. This study aims to determine whether JTV-519 modifies the stretch-induced manifestations of mechanoelectric feedback. The ventricular fibrillation (VF) modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts using epicardial multiple electrodes under control conditions (n=9) or during JTV-519 perfusion: 0.1 µmol/L (n=9) and 1 µmol/L (n=9). Spectral and mapping techniques were used to establish the baseline, stretch and post-stretch VF characteristics. JTV-519 slowed baseline VF and decreased activation complexity. These effects were dose-dependent (baseline VF dominant frequency: control=13.9±2.2 Hz; JTV 0.1 µmol/L=11.1±1.1 Hz, P<.01; JTV 1 µmol/L=6.6±1.1 Hz, P<.0001). The stretch-induced acceleration of VF (control=38.8%) was significantly reduced by JTV-519 0.1 µmol/L (19.8%) and abolished by JTV 1 µmol/L (-1.5%). During stretch, the VF activation complexity index was reduced in both JTV-519 series (control=1.60±0.15; JTV 0.1 µmol/L=1.13±0.3, P<.0001; JTV 1 µmol/L=0.57±0.21, P<.0001), and was independently related to VF dominant frequency (R=.82; P<.0001). The fifth percentile of the VF activation intervals, conduction velocity and wavelength entered the multiple linear regression model using dominant frequency as the dependent variable (R=-.84; P<.0001). In conclusion, JTV-519 slowed and simplified the baseline VF activation patterns and abolished the stretch-induced manifestations of mechanoelectric feedback.


Subject(s)
Feedback, Physiological/drug effects , Thiazepines/therapeutic use , Ventricular Fibrillation/drug therapy , Ventricular Fibrillation/physiopathology , Animals , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Feedback, Physiological/physiology , Pressoreceptors/drug effects , Pressoreceptors/physiology , Rabbits , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/physiology , Thiazepines/pharmacology , Treatment Outcome
12.
Heart ; 102(20): 1662-70, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27296239

ABSTRACT

OBJECTIVE: A safety threshold for baseline rhythm R-wave amplitudes during follow-up of implantable cardioverter defibrillators (ICD) has not been established. We aimed to analyse the amplitude distribution and undersensing rate during spontaneous episodes of ventricular fibrillation (VF), and define a safety amplitude threshold for baseline R-waves. METHODS: Data were obtained from an observational multicentre registry conducted at 48 centres in Spain. Baseline R-wave amplitudes and VF events were prospectively registered by remote monitoring. Signal processing algorithms were used to compare amplitudes of baseline R-waves with VF R-waves. All undersensed R-waves after the blanking period (120 ms) were manually marked. RESULTS: We studied 2507 patients from August 2011 to September 2014, which yielded 229 VF episodes (cycle length 189.6±29.1 ms) from 83 patients that were suitable for R-wave comparisons (follow-up 2.7±2.6 years). The majority (77.6%) of VF R-waves (n=13953) showed lower amplitudes than the reference baseline R-wave. The decrease in VF amplitude was progressively attenuated among subgroups of baseline R-wave amplitude (≥17; ≥12 to <17; ≥7 to <12; ≥2.2 to <7 mV) from the highest to the lowest: median deviations -51.2% to +22.4%, respectively (p=0.027). There were no significant differences in undersensing rates of VF R-waves among subgroups. Both the normalised histogram distribution and the undersensing risk function obtained from the ≥2.2 to <7 mV subgroup enabled the prediction that baseline R-wave amplitudes ≤2.5 mV (interquartile range: 2.3-2.8 mV) may lead to ≥25% of undersensed VF R-waves. CONCLUSIONS: Baseline R-wave amplitudes ≤2.5 mV during follow-up of patients with ICDs may lead to high risk of delayed detection of VF. TRIAL REGISTRATION NUMBER: NCT01561144; results.


Subject(s)
Defibrillators, Implantable , Electric Countershock/instrumentation , Heart Conduction System/physiopathology , Ventricular Fibrillation/therapy , Action Potentials , Adult , Aged , Delayed Diagnosis , Electric Countershock/adverse effects , Electrocardiography/methods , Female , Heart Rate , Humans , Male , Middle Aged , Patient Safety , Predictive Value of Tests , Prosthesis Design , Registries , Remote Sensing Technology/methods , Risk Factors , Signal Processing, Computer-Assisted , Spain , Telemetry/methods , Time Factors , Treatment Outcome , Ventricular Fibrillation/diagnosis , Ventricular Fibrillation/physiopathology
13.
Rev. esp. cardiol. (Ed. impr.) ; 68(12): 1101-1110, dic. 2015. ilus, tab, graf
Article in Spanish | IBECS | ID: ibc-145616

ABSTRACT

Introducción y objetivos: Se han implicado diversos mecanismos en la respuesta mecánica al estiramiento miocárdico, que incluyen la activación del intercambiador Na+/H+ por acciones autocrinas y paracrinas. Se estudia la participación de estos mecanismos en las respuestas electrofisiológicas al estiramiento agudo miocárdico mediante el análisis de los cambios inducidos con fármacos. Métodos: Se analizan las modificaciones de la fibrilación ventricular inducidas por el estiramiento agudo miocárdico en corazones de conejo aislados y perfundidos utilizando electrodos múltiples epicárdicos y técnicas cartográficas. Se estudian 4 series: control (n = 9); durante la perfusión del antagonista de los receptores de la angiotensina II, losartán (1 miM, n = 8); durante la perfusión del bloqueador del receptor de la endotelina A, BQ-123 (0,1 miM, n = 9), y durante la perfusión del inhibidor del intercambiador Na+/H+, EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 miM, n = 9). Resultados: EIPA atenuó el aumento de la frecuencia dominante de la fibrilación producido por el estiramiento (control = 40,4%; losartán = 36% [no significativo]; BQ-123 = 46% [no significativo], y EIPA = 22% [p < 0,001]). Durante el estiramiento, la complejidad de los mapas de activación fue menor en la serie con EIPA (p < 0,0001) y también en esta serie fue mayor la concentración espectral de la arritmia (mayor regularidad): control = 18 ± 3%; EIPA = 26 ± 9% (p < 0,02); losartán = 18 ± 5% (no significativo), y BQ-123 = 18 ± 4% (no significativo). Conclusiones: El inhibidor del intercambiador Na+/H+ EIPA atenúa los efectos electrofisiológicos responsables de la aceleración y del aumento de la complejidad de la fibrilación ventricular producidos por el estiramiento agudo miocárdico. Por el contrario, el antagonista de los receptores de la angiotensina II, losartán, y el del receptor A de la endotelina, BQ-123, no modifican estos efectos (AU)


Introduction and objectives: Mechanical response to myocardial stretch has been explained by various mechanisms, which include Na+ /H+ exchanger activation by autocrine-paracrine system activity. Drug-induced changes were analyzed to investigate the role of these mechanisms in the electrophysiological responses to acute myocardial stretch. Methods: Multiple epicardial electrodes and mapping techniques were used to analyze changes in ventricular fibrillation induced by acute myocardial stretch in isolated perfused rabbit hearts. Four series were studied: control (n = 9); during perfusion with the angiotensin receptor blocker losartan (1 mM, n = 8); during perfusion with the endothelin A receptor blocker BQ-123 (0.1 mM, n = 9), and during perfusion with the Na+ /H+ exchanger inhibitor EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 mM, n = 9). Results: EIPA attenuated the increase in the dominant frequency of stretch-induced fibrillation (control = 40.4%; losartan = 36% [not significant]; BQ-123 = 46% [not significant]; and EIPA = 22% [P < .001]). During stretch, the activation maps were less complex (P < .0001) and the spectral concentration of the arrhythmia was greater (greater regularity) in the EIPA series: control = 18 (3%); EIPA = 26 (9%) (P < .02); losartan = 18 (5%) (not significant); and BQ-123 = 18 (4%) (not significant). Conclusions: The Na+ /H+ exchanger inhibitor EIPA attenuated the electrophysiological effects responsible for the acceleration and increased complexity of ventricular fibrillation induced by acute myocardial stretch. The angiotensin II receptor antagonist losartan and the endothelin A receptor blocker BQ-123 did not modify these effects (AU)


Subject(s)
Humans , Losartan/pharmacokinetics , Amiloride/pharmacokinetics , /pharmacokinetics , Arrhythmias, Cardiac/drug therapy , Ventricular Fibrillation/drug therapy , 28573 , Endothelin Receptor Antagonists/pharmacokinetics , Endoplasmic Reticulum Stress , Myocardial Revascularization , Cardiac Electrophysiology/methods
14.
Cardiovasc Drugs Ther ; 29(3): 231-41, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26138210

ABSTRACT

PURPOSE: Mechanical stretch is an arrhythmogenic factor found in situations of cardiac overload or dyssynchronic contraction. Ranolazine is an antianginal agent that inhibits the late Na (+) current and has been shown to exert a protective effect against arrhythmias. The present study aims to determine whether ranolazine modifies the electrophysiological responses induced by acute mechanical stretch. METHODS: The ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts using epicardial multiple electrodes under control conditions (n = 9) or during perfusion of the late Na(+) current blocker ranolazine 5 µM (n = 9). Spectral and mapping techniques were used to establish the ventricular fibrillation dominant frequency, the spectral concentration and the complexity of myocardial activation in three situations: baseline, stretch and post-stretch. RESULTS: Ranolazine attenuated the increase in ventricular fibrillation dominant frequency produced by stretch (23.0 vs 40.4 %) (control: baseline =13.6 ± 2.6 Hz, stretch = 19.1 ± 3.1 Hz, p < 0.0001; ranolazine: baseline = 1.4 ± 1.8 Hz, stretch =14.0 ± 2.4 Hz, p < 0.05 vs baseline, p < 0.001 vs control). During stretch, ventricular fibrillation was less complex in the ranolazine than in the control series, as evaluated by the lesser percentage of complex maps and the greater spectral concentration of ventricular fibrillation. These changes were associated to an increase in the fifth percentile of VV intervals during ventricular fibrillation (50 ± 8 vs 38 ± 5 ms, p < .01) and in the wavelength of the activation (2.4 ± 0.3 vs 1.9 ± 0.2 cm, p < 0.001) under ranolazine. CONCLUSIONS: The late inward Na(+) current inhibitor ranolazine attenuates the electrophysiological effects responsible for the acceleration and increase in complexity of ventricular fibrillation produced by myocardial stretch.


Subject(s)
Biomechanical Phenomena/drug effects , Electrophysiological Phenomena/drug effects , Heart/drug effects , Ranolazine/pharmacology , Ranolazine/therapeutic use , Ventricular Fibrillation/drug therapy , Ventricular Fibrillation/physiopathology , Animals , Heart/physiology , Heart/physiopathology , In Vitro Techniques , Isolated Heart Preparation , Rabbits
15.
Rev Esp Cardiol (Engl Ed) ; 68(12): 1101-10, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25985899

ABSTRACT

INTRODUCTION AND OBJECTIVES: Mechanical response to myocardial stretch has been explained by various mechanisms, which include Na(+)/H(+) exchanger activation by autocrine-paracrine system activity. Drug-induced changes were analyzed to investigate the role of these mechanisms in the electrophysiological responses to acute myocardial stretch. METHODS: Multiple epicardial electrodes and mapping techniques were used to analyze changes in ventricular fibrillation induced by acute myocardial stretch in isolated perfused rabbit hearts. Four series were studied: control (n = 9); during perfusion with the angiotensin receptor blocker losartan (1 µM, n = 8); during perfusion with the endothelin A receptor blocker BQ-123 (0.1 µM, n = 9), and during perfusion with the Na(+)/H(+) exchanger inhibitor EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 µM, n = 9). RESULTS: EIPA attenuated the increase in the dominant frequency of stretch-induced fibrillation (control=40.4%; losartan=36% [not significant]; BQ-123=46% [not significant]; and EIPA=22% [P<.001]). During stretch, the activation maps were less complex (P<.0001) and the spectral concentration of the arrhythmia was greater (greater regularity) in the EIPA series: control=18 (3%); EIPA = 26 (9%) (P < .02); losartan=18 (5%) (not significant); and BQ-123=18 (4%) (not significant). CONCLUSIONS: The Na(+)/H(+) exchanger inhibitor EIPA attenuated the electrophysiological effects responsible for the acceleration and increased complexity of ventricular fibrillation induced by acute myocardial stretch. The angiotensin II receptor antagonist losartan and the endothelin A receptor blocker BQ-123 did not modify these effects.


Subject(s)
Heart/physiology , Myocardium , Stress, Physiological/physiology , Amiloride/analogs & derivatives , Amiloride/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Endothelin Receptor Antagonists/pharmacology , Epithelial Sodium Channel Blockers/pharmacology , Heart/drug effects , Losartan/pharmacology , Peptides, Cyclic/pharmacology , Rabbits , Sodium-Hydrogen Exchangers/drug effects , Ventricular Fibrillation/physiopathology
16.
Int J Cardiol ; 186: 250-8, 2015.
Article in English | MEDLINE | ID: mdl-25828128

ABSTRACT

BACKGROUND: Early prognosis in comatose survivors after cardiac arrest due to ventricular fibrillation (VF) is unreliable, especially in patients undergoing mild hypothermia. We aimed at developing a reliable risk-score to enable early prediction of cerebral performance and survival. METHODS: Sixty-one out of 239 consecutive patients undergoing mild hypothermia after cardiac arrest, with eventual return of spontaneous circulation (ROSC), and comatose status on admission fulfilled the inclusion criteria. Background clinical variables, VF time and frequency domain fundamental variables were considered. The primary and secondary outcomes were a favorable neurological performance (FNP) during hospitalization and survival to hospital discharge, respectively. The predictive model was developed in a retrospective cohort (n = 32; September 2006-September 2011, 48.5 ± 10.5 months of follow-up) and further validated in a prospective cohort (n = 29; October 2011-July 2013, 5 ± 1.8 months of follow-up). RESULTS: FNP was present in 16 (50.0%) and 21 patients (72.4%) in the retrospective and prospective cohorts, respectively. Seventeen (53.1%) and 21 patients (72.4%), respectively, survived to hospital discharge. Both outcomes were significantly associated (p < 0.001). Retrospective multivariate analysis provided a prediction model (sensitivity = 0.94, specificity = 1) that included spectral dominant frequency, derived power density and peak ratios between high and low frequency bands, and the number of shocks delivered before ROSC. Validation on the prospective cohort showed sensitivity = 0.88 and specificity = 0.91. A model-derived risk-score properly predicted 93% of FNP. Testing the model on follow-up showed a c-statistic ≥ 0.89. CONCLUSIONS: A spectral analysis-based model reliably correlates time-dependent VF spectral changes with acute cerebral injury in comatose survivors undergoing mild hypothermia after cardiac arrest.


Subject(s)
Brain/physiopathology , Coma/etiology , Hypothermia, Induced/methods , Out-of-Hospital Cardiac Arrest/therapy , Risk Assessment/methods , Ventricular Fibrillation/therapy , Coma/mortality , Coma/therapy , Female , Follow-Up Studies , Humans , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/complications , Prognosis , Prospective Studies , Survival Rate/trends , Time Factors , Ventricular Fibrillation/complications , Ventricular Fibrillation/mortality
17.
Biophys J ; 106(8): 1811-21, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24739180

ABSTRACT

Maintenance of paroxysmal atrial fibrillation (AF) by fast rotors in the left atrium (LA) or at the pulmonary veins (PVs) is not fully understood. To gain insight into this dynamic and complex process, we studied the role of the heterogeneous distribution of transmembrane currents in the PVs and LA junction (PV-LAJ) in the localization of rotors in the PVs. We also investigated whether simple pacing protocols could be used to predict rotor drift in the PV-LAJ. Experimentally observed heterogeneities in IK1, IKs, IKr, Ito, and ICaL in the PV-LAJ were incorporated into two- and pseudo three-dimensional models of Courtemanche-Ramirez-Nattel-Kneller human atrial kinetics to simulate various conditions and investigate rotor drifting mechanisms. Spatial gradients in the currents resulted in shorter action potential duration, minimum diastolic potential that was less negative, and slower upstroke and conduction velocity for rotors in the PV region than in the LA. Rotors under such conditions drifted toward the PV and stabilized at the shortest action potential duration and less-excitable region, consistent with drift direction under intercellular coupling heterogeneities and regardless of the geometrical constraint in the PVs. Simulations with various IK1 gradient conditions and current-voltage relationships substantiated its major role in the rotor drift. In our 1:1 pacing protocol, we found that among various action potential properties, only the minimum diastolic potential gradient was a rate-independent predictor of rotor drift direction. Consistent with experimental and clinical AF studies, simulations in an electrophysiologically heterogeneous model of the PV-LAJ showed rotor attraction toward the PV. Our simulations suggest that IK1 heterogeneity is dominant compared to other currents in determining the drift direction through its impact on the excitability gradient. These results provide a believed novel framework for understanding the complex dynamics of rotors in AF.


Subject(s)
Atrial Fibrillation/physiopathology , Models, Cardiovascular , Pulmonary Veins/physiopathology , Action Potentials/physiology , Computer Simulation , Humans , Ions , Sodium/metabolism
18.
Cardiovasc Res ; 99(3): 566-75, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23559611

ABSTRACT

AIMS: Pulmonary vein ganglia (PVG) are targets for atrial fibrillation ablation. However, the functional relevance of PVG to the normal heart rhythm remains unclear. Our aim was to investigate whether PVG can modulate sinoatrial node (SAN) function. METHODS AND RESULTS: Forty-nine C57BL and seven Connexin40+/EGFP mice were studied. We used tyrosine-hydroxylase (TH) and choline-acetyltransferase immunofluorescence labelling to characterize adrenergic and cholinergic neural elements. PVG projected postganglionic nerves to the SAN, which entered the SAN as an extensive, mesh-like neural network. PVG neurones were adrenergic, cholinergic, and biphenotypic. Histochemical characterization of two human embryonic hearts showed similarities between mouse and human neuroanatomy: direct neural communications between PVG and SAN. In Langendorff perfused mouse hearts, PVG were stimulated using 200-2000 ms trains of pulses (300 µs, 400 µA, 200 Hz). PVG stimulation caused an initial heart rate (HR) slowing (36 ± 9%) followed by acceleration. PVG stimulation in the presence of propranolol caused HR slowing (43 ± 13%) that was sustained over 20 beats. PVG stimulation with atropine progressively increased HR. Time-course effects were enhanced with 1000 and 2000 ms trains (P < 0.05 vs. 200 ms). In optical mapping, PVG stimulation shifted the origin of SAN discharges. In five paroxysmal AF patients undergoing pulmonary vein ablation, application of radiofrequency energy to the PVG area during sinus rhythm produced a decrease in HR similar to that observed in isolated mouse hearts. CONCLUSION: PVG have functional and anatomical biphenotypic characteristics. They can have significant effects on the electrophysiological control of the SAN.


Subject(s)
Ganglia/physiology , Pulmonary Veins/innervation , Sinoatrial Node/innervation , Sinoatrial Node/physiology , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Atrial Fibrillation/therapy , Biological Clocks/physiology , Catheter Ablation , Electric Stimulation , Electrophysiological Phenomena , Female , Fetal Heart/anatomy & histology , Fetal Heart/innervation , Ganglia/anatomy & histology , Heart Conduction System/physiology , Heart Rate/physiology , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Sinoatrial Node/anatomy & histology
19.
J Physiol ; 590(24): 6363-79, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23090949

ABSTRACT

Spatial dispersion of action potential duration (APD) is a substrate for the maintenance of cardiac fibrillation, but the mechanisms are poorly understood. We investigated the role played by spatial APD dispersion in fibrillatory dynamics. We used an in vitro model in which spatial gradients in the expression of ether-à-go-go-related (hERG) protein, and thus rapid delayed rectifying K(+) current (I(Kr)) density, served to generate APD dispersion, high-frequency rotor formation, wavebreak and fibrillatory conduction. A unique adenovirus-mediated magnetofection technique generated well-controlled gradients in hERG and green fluorescent protein (GFP) expression in neonatal rat ventricular myocyte monolayers. Computer simulations using a realistic neonatal rat ventricular myocyte monolayer model provided crucial insight into the underlying mechanisms. Regional hERG overexpression shortened APD and increased rotor incidence in the hERG overexpressing region. An APD profile at 75 percent repolarization with a 16.6 ± 0.72 ms gradient followed the spatial profile of hERG-GFP expression; conduction velocity was not altered. Rotors in the infected region whose maximal dominant frequency was 12.9 Hz resulted in wavebreak at the interface (border zone) between infected and non-infected regions; dominant frequency distribution was uniform when the maximal dominant frequency was <12.9 Hz or the rotors resided in the uninfected region. Regularity at the border zone was lowest when rotors resided in the infected region. In simulations, a fivefold regional increase in I(Kr) abbreviated the APD and hyperpolarized the resting potential. However, the steep APD gradient at the border zone proved to be the primary mechanism of wavebreak and fibrillatory conduction. This study provides insight at the molecular level into the mechanisms by which spatial APD dispersion contributes to wavebreak, rotor stabilization and fibrillatory conduction.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Magnetics , Myocytes, Cardiac/metabolism , Potassium/metabolism , Transfection/methods , Adenoviridae/genetics , Animals , Animals, Newborn , Arrhythmias, Cardiac/genetics , Cells, Cultured , Computer Simulation , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/genetics , Genetic Vectors , Humans , Models, Cardiovascular , Nanoparticles , Rats , Time Factors
20.
Arch Cardiol Mex ; 82(2): 139-52, 2012.
Article in Spanish | MEDLINE | ID: mdl-22735655

ABSTRACT

Atrial fibrillation (AF) is the most common sustained arrhythmia seen in clinical practice. Despite of new technological breakthroughs and the understanding of the mechanisms underlying AF, based on animal models and ablation procedures in patients, the antiarrhythmic drugs remain the main therapeutic strategy to restore and maintain the sinus rhythm. New antiarrhythmic drugs are already available in the clinical practice and many others are under development. The new antiarrhythmic drugs have the capability to block atrial-specific ionic currents, which are involved in the maintenance of the arrhythmia. Parallel, increasing evidence supports the use of compounds to regulate the arrhythmogenic atrial substrate involved in the long-term maintenance of the arrhythmia (upstream therapies). This article reviews the new antiarrhythmic drugs and upstream therapies, based on the current knowledge of the mechanisms involved in the maintenance of AF.


Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Anti-Arrhythmia Agents/pharmacology , Electrophysiological Phenomena/drug effects , Heart/drug effects , Heart/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...