Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 2: 170, 2019.
Article in English | MEDLINE | ID: mdl-31098403

ABSTRACT

Traumatic skeletal muscle injuries cause irreversible tissue damage and impaired revascularization. Engineered muscle is promising for enhancing tissue revascularization and regeneration in injured muscle. Here we fabricated engineered skeletal muscle composed of myotubes interspersed with vascular endothelial cells using spatially patterned scaffolds that induce aligned cellular organization, and then assessed their therapeutic benefit for treatment of murine volumetric muscle loss. Murine skeletal myoblasts co-cultured with endothelial cells in aligned nanofibrillar scaffolds form endothelialized and aligned muscle with longer myotubes, more synchronized contractility, and more abundant secretion of angiogenic cytokines, compared to endothelialized engineered muscle formed from randomly-oriented scaffolds. Treatment of traumatically injured muscle with endothelialized and aligned skeletal muscle promotes the formation of highly organized myofibers and microvasculature, along with greater vascular perfusion, compared to treatment of muscle derived from randomly-oriented scaffolds. This work demonstrates the potential of endothelialized and aligned engineered skeletal muscle to promote vascular regeneration following transplantation.


Subject(s)
Muscle, Skeletal/blood supply , Muscle, Skeletal/injuries , Tissue Engineering/methods , Animals , Cell Line , Coculture Techniques , Cytokines/biosynthesis , Endothelial Cells/cytology , Endothelial Cells/physiology , Humans , Mice , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Myoblasts, Skeletal/cytology , Nanofibers/ultrastructure , Regeneration/physiology , Tissue Scaffolds
2.
FASEB J ; 30(9): 3238-55, 2016 09.
Article in English | MEDLINE | ID: mdl-27306334

ABSTRACT

We previously found that in utero caffeine exposure causes down-regulation of DNA methyltransferases (DNMTs) in embryonic heart and results in impaired cardiac function in adulthood. To assess the role of DNMTs in these events, we investigated the effects of reduced DNMT expression on embryonic cardiomyocytes. siRNAs were used to knock down individual DNMT expression in primary cultures of mouse embryonic cardiomyocytes. Immunofluorescence staining was conducted to evaluate cell morphology. A video-based imaging assay and multielectrode array were used to assess cardiomyocyte contractility and electrophysiology, respectively. RNA-Seq and multiplex bisulfite sequencing were performed to examine gene expression and promoter methylation, respectively. At 72 h after transfection, reduced DNMT3a expression, but not DNMT1 or -3b, disrupted sarcomere assembly and decreased beating frequency, contractile movement, amplitude of field action potential, and cytosolic calcium signaling of cardiomyocytes. RNA-Seq analysis revealed that the DNMT3a-deficient cells had deactivated gene networks involved in calcium, endothelin-1, renin-angiotensin, and cardiac ß-adrenergic receptor signaling, which were not inhibited by DNMT3b siRNA. Moreover, decreased methylation levels were found in the promoters of Myh7, Myh7b, Tnni3, and Tnnt2, consistent with the up-regulation of these genes by DNMT3a siRNA. These data show that DNMT3a plays an important role in regulating embryonic cardiomyocyte gene expression, morphology and function.-Fang, X., Poulsen, R. R., Wang-Hu, J., Shi, O., Calvo, N. S., Simmons, C. S., Rivkees, S. A., Wendler, C. C. Knockdown of DNA methyltransferase 3a alters gene expression and inhibits function of embryonic cardiomyocytes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Embryo, Mammalian/physiology , Gene Expression Regulation, Developmental/physiology , Myocytes, Cardiac/enzymology , Action Potentials/physiology , Animals , Apoptosis , Calcium Signaling/physiology , Cell Survival , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Down-Regulation , Gene Knockdown Techniques , Mice , Sarcomeres , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL
...