Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cancer Cell ; 37(5): 655-673.e11, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32396861

ABSTRACT

Follicular lymphomas (FLs) are slow-growing, indolent tumors containing extensive follicular dendritic cell (FDC) networks and recurrent EZH2 gain-of-function mutations. Paradoxically, FLs originate from highly proliferative germinal center (GC) B cells with proliferation strictly dependent on interactions with T follicular helper cells. Herein, we show that EZH2 mutations initiate FL by attenuating GC B cell requirement for T cell help and driving slow expansion of GC centrocytes that become enmeshed with and dependent on FDCs. By impairing T cell help, mutant EZH2 prevents induction of proliferative MYC programs. Thus, EZH2 mutation fosters malignant transformation by epigenetically reprograming B cells to form an aberrant immunological niche that reflects characteristic features of human FLs, explaining how indolent tumors arise from GC B cells.


Subject(s)
B-Lymphocytes/immunology , Cell Transformation, Neoplastic/immunology , Cellular Reprogramming , Enhancer of Zeste Homolog 2 Protein/genetics , Lymphoma, B-Cell/immunology , Lymphoma, Follicular/immunology , Mutation , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Female , Germinal Center/immunology , Germinal Center/metabolism , Germinal Center/pathology , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Mice , Mice, Inbred C57BL
2.
Cancer Discov ; 8(12): 1632-1653, 2018 12.
Article in English | MEDLINE | ID: mdl-30274972

ABSTRACT

TET2 somatic mutations occur in ∼10% of diffuse large B-cell lymphomas (DLBCL) but are of unknown significance. Herein, we show that TET2 is required for the humoral immune response and is a DLBCL tumor suppressor. TET2 loss of function disrupts transit of B cells through germinal centers (GC), causing GC hyperplasia, impaired class switch recombination, blockade of plasma cell differentiation, and a preneoplastic phenotype. TET2 loss was linked to focal loss of enhancer hydroxymethylation and transcriptional repression of genes that mediate GC exit, such as PRDM1. Notably, these enhancers and genes are also repressed in CREBBP-mutant DLBCLs. Accordingly, TET2 mutation in patients yields a CREBBP-mutant gene-expression signature, CREBBP and TET2 mutations are generally mutually exclusive, and hydroxymethylation loss caused by TET2 deficiency impairs enhancer H3K27 acetylation. Hence, TET2 plays a critical role in the GC reaction, and its loss of function results in lymphomagenesis through failure to activate genes linked to GC exit signals. SIGNIFICANCE: We show that TET2 is required for exit of the GC, B-cell differentiation, and is a tumor suppressor for mature B cells. Loss of TET2 phenocopies CREBBP somatic mutation. These results advocate for sequencing TET2 in patients with lymphoma and for the testing of epigenetic therapies to treat these tumors.See related commentary by Shingleton and Dave, p. 1515.This article is highlighted in the In This Issue feature, p. 1494.


Subject(s)
Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Germinal Center/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Plasma Cells/metabolism , Proto-Oncogene Proteins/genetics , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , DNA-Binding Proteins/metabolism , Dioxygenases , Epigenesis, Genetic/genetics , Gene Expression Profiling/methods , Germinal Center/pathology , Hematopoietic Stem Cells/metabolism , Humans , Hyperplasia , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice, Knockout , Mice, Transgenic , Mutation , Plasma Cells/pathology , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Proto-Oncogene Proteins/metabolism
3.
Nat Commun ; 8(1): 877, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026085

ABSTRACT

The EZH2 histone methyltransferase is required for B cells to form germinal centers (GC). Here we show that EZH2 mediates GC formation through repression of cyclin-dependent kinase inhibitor CDKN1A (p21Cip1). Deletion of Cdkn1a rescues the GC reaction in Ezh2 -/- mice. Using a 3D B cell follicular organoid system that mimics the GC reaction, we show that depletion of EZH2 suppresses G1 to S phase transition of GC B cells in a Cdkn1a-dependent manner. GC B cells of Cdkn1a -/- Ezh2 -/- mice have high levels of phospho-Rb, indicating that loss of Cdkn1a enables progression of cell cycle. Moreover, the transcription factor E2F1 induces EZH2 during the GC reaction. E2f1 -/- mice manifest impaired GC responses, which is rescued by restoring EZH2 expression, thus defining a positive feedback loop in which EZH2 controls GC B cell proliferation by suppressing CDKN1A, enabling cell cycle progression with a concomitant phosphorylation of Rb and release of E2F1.The histone methyltransferase EZH2 silences genes by generating H3K27me3 marks. Here the authors use a 3D GC organoid and show EZH2 mediates germinal centre (GC) formation through epigenetic silencing of CDKN1A and release of cell cycle checkpoints.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/antagonists & inhibitors , E2F1 Transcription Factor/physiology , Enhancer of Zeste Homolog 2 Protein/physiology , Germinal Center/metabolism , Animals , Cell Proliferation , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Feedback, Physiological , G1 Phase Cell Cycle Checkpoints/genetics , Gene Silencing , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...