Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 144: 1788-96, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26524148

ABSTRACT

Fractionation of elemental contents in atmospheric samples is useful to evaluate pollution levels for risk assessment and pollution sources assignment. We present here the main results of long-term characterization of atmospheric deposition by using a recently developed atmospheric elemental fractionation sampler (AEFS) for major and trace elements monitoring around an important industrial complex located in Puchuncaví region (Chile). Atmospheric deposition samples were collected during two sampling campaigns (2010 and 2011) at four sampling locations: La Greda (LG), Los Maitenes (LM), Puchuncaví (PU) and Valle Alegre (VA). Sample digestion and ICP-MS gave elements deposition values (Al, As, Ba, Cd, Co, Cu, Fe, K, Mn, Pb, Sb, Ti, V and Zn) in the insoluble fraction of the total atmospheric deposition. Results showed that LG location, the closest location to the industrial complex, was the more polluted sampling site having the highest values for the analyzed elements. PU and LM were the next more polluted and, finally, the lowest elements concentrations were registered at VA. The application of Principal Component Analysis and Cluster Analysis identified industrial, traffic and mineral-crustal factors. We found critical loads exceedances for Pb at all sampling locations in the area affected by the industrial emissions, more significant in LG close to the industrial complex, with a trend to decrease in 2011, whereas no exceedances due to atmospheric deposition were detected for Cd.


Subject(s)
Air Pollutants/analysis , Arsenic/analysis , Metals/analysis , Soil Pollutants/analysis , Chile , Cluster Analysis , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Industry , Principal Component Analysis , Spatial Analysis
2.
Talanta ; 125: 125-30, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24840424

ABSTRACT

We have developed and validated a new simple and effective methodology for fractionation of soluble and insoluble forms of trace elements in total atmospheric deposition. The proposed methodology is based on the modification of a standard total deposition passive sampler by integrating a quartz fiber filter that retains the insoluble material, allowing the soluble fraction to pass through and flow to a receiving bottle. The quartz filter containing the insoluble fraction and the liquid containing the soluble fraction are then separately assayed by standardized ICP-MS protocols. The proposed atmospheric elemental fractionation sampler (AEFS) was validated by analyzing a Coal Fly Ash reference material with proper recoveries, and tested for field fractionation of a set of 10 key trace elements in total atmospheric deposition at the industrial area of Puchuncaví-Ventanas, Chile. The AEFS was proven useful for pollution assessment and also to identify variability of the soluble and insoluble fractions of the selected elements within the study area, improving the analytical information attainable by standard passive samplers for total deposition without the need of using sophisticated and high cost wet-only/dry only collectors.


Subject(s)
Environmental Monitoring/methods , Trace Elements/analysis , Air Pollutants/analysis , Atmosphere , Chile , Coal , Coal Ash , Environmental Restoration and Remediation , Equipment Design , Filtration , Geography , Industrial Waste , Industry , Mass Spectrometry , Reference Values , Reproducibility of Results , Solubility
3.
Talanta ; 101: 435-9, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23158345

ABSTRACT

The applicability of commercial screen-printed gold electrodes (SPGEs) connected to a portable potentiostat and a laptop has been explored to optimize a new square wave anodic stripping voltammetric method for on-site determination of soluble Cu(II) in atmospheric deposition samples taken around an industrial complex. Electrode conditioning procedures, chemical and instrumental variables have been optimized to develop a reliable method capable of measuring dissolved copper with a detection limit of 3.7 ng mL(-1), useful for pollution monitoring or screening purposes. The proposed method was tested with the SLRS-5 River Water for Trace Metals (recoveries 109.9-113.1%) and the SPS-SW2 Batch 121 Elements in Surface Waters (recoveries 93.2-97.6%). The method was applied to soluble Cu(II) measurement in liquid samples taken by a total atmospheric deposition collector modified with a quartz filter for soluble and insoluble elemental speciation. The voltammetric measurements on field samples were tested in the lab by a reference ICP-MS method, with good agreement. The proposed method proved capability for field operation during a two weeks monitoring campaign.

SELECTION OF CITATIONS
SEARCH DETAIL
...