Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Lancet Reg Health West Pac ; 47: 101103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38953059

ABSTRACT

Background: In Australia the incidence of HIV has declined steadily, yet sustained reduction of HIV transmission in this setting requires improved public health responses. As enhanced public health responses and prioritisation of resources may be guided by molecular epidemiological data, here we aimed to assess the applicability of these approaches in Victoria, Australia. Methods: A comprehensive collection of HIV-1 pol sequences from individuals diagnosed with HIV in Victoria, Australia, between January 1st 2000 and December 31st 2020 were deidentified and used as the basis of our assessment. These sequences were subtyped and surveillance drug resistance mutations (SDRMs) identified, before definition of transmission groups was performed using HIV-TRACE (0.4.4). Phylodynamic methods were applied using BEAST (2.6.6), assessing effective reproductive numbers for large groups, and additional demographic data were integrated to provide a high resolution view of HIV transmission in Victoria on a decadal time scale. Findings: Based on standard settings for HIV-TRACE, 70% (2438/3507) of analysed HIV-1 pol sequences were readily assigned to a transmission group. Individuals in transmission groups were more commonly males (aOR 1.50), those born in Australia (aOR 2.13), those with probable place of acquisition as Victoria (aOR 6.73), and/or those reporting injectable drug use (aOR 2.13). SDRMs were identified in 375 patients (10.7%), with sustained transmission of these limited to a subset of smaller groups. Informative patterns of epidemic growth, stabilisation, and decline were observed; many transmission groups showed effective reproductive numbers (R e ) values reaching greater than 4.0, representing considerable epidemic growth, while others maintained low R e values. Interpretation: This study provides a high resolution view of HIV transmission in Victoria, Australia, and highlights the potential of molecular epidemiology to guide and enhance public health responses in this setting. This informs ongoing discussions with community groups on the acceptability and place of molecular epidemiological approaches in Australia. Funding: National Health and Medical Research Council, Australian Research Council.

2.
iScience ; 27(6): 110009, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868206

ABSTRACT

Continuous assessment of the impact of SARS-CoV-2 on the host at the cell-type level is crucial for understanding key mechanisms involved in host defense responses to viral infection. We investigated host response to ancestral-strain and Alpha-variant SARS-CoV-2 infections within air-liquid-interface human nasal epithelial cells from younger adults (26-32 Y) and older children (12-14 Y) using single-cell RNA-sequencing. Ciliated and secretory-ciliated cells formed the majority of highly infected cell-types, with the latter derived from ciliated lineages. Strong innate immune responses were observed across lowly infected and uninfected bystander cells and heightened in Alpha-infection. Alpha highly infected cells showed increased expression of protein-refolding genes compared with ancestral-strain-infected cells in children. Furthermore, oxidative phosphorylation-related genes were down-regulated in bystander cells versus infected and mock-control cells, underscoring the importance of these biological functions for viral replication. Overall, this study highlights the complexity of cell-type-, age- and viral strain-dependent host epithelial responses to SARS-CoV-2.

4.
Lancet Microbe ; 5(4): e317-e325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359857

ABSTRACT

BACKGROUND: There has been high uptake of rapid antigen test device use for point-of-care COVID-19 diagnosis. Individuals who are symptomatic but test negative on COVID-19 rapid antigen test devices might have a different respiratory viral infection. We aimed to detect and sequence non-SARS-CoV-2 respiratory viruses from rapid antigen test devices, which could assist in the characterisation and surveillance of circulating respiratory viruses in the community. METHODS: We applied archival clinical nose and throat swabs collected between Jan 1, 2015, and Dec 31, 2022, that previously tested positive for a common respiratory virus (adenovirus, influenza, metapneumovirus, parainfluenza, rhinovirus, respiratory syncytial virus [RSV], or seasonal coronavirus; 132 swabs and 140 viral targets) on PCR to two commercially available COVID-19 rapid antigen test devices, the Panbio COVID-19 Ag Rapid Test Device and Roche SARS-CoV-2 Antigen Self-Test. In addition, we collected 31 COVID-19 rapid antigen test devices used to test patients who were symptomatic at The Royal Melbourne Hospital emergency department in Melbourne, Australia. We extracted total nucleic acid from the device paper test strips and assessed viral recovery using multiplex real-time PCR (rtPCR) and capture-based whole genome sequencing. Sequence and genome data were analysed through custom computational pipelines, including subtyping. FINDINGS: Of the 140 respiratory viral targets from archival samples, 89 (64%) and 88 (63%) were positive on rtPCR for the relevant taxa following extraction from Panbio or Roche rapid antigen test devices, respectively. Recovery was variable across taxa: we detected influenza A in nine of 18 samples from Panbio and seven of 18 from Roche devices; parainfluenza in 11 of 20 samples from Panbio and 12 of 20 from Roche devices; human metapneumovirus in 11 of 16 from Panbio and 14 of 16 from Roche devices; seasonal coronavirus in eight of 19 from Panbio and two of 19 from Roche devices; rhinovirus in 24 of 28 from Panbio and 27 of 28 from Roche devices; influenza B in four of 15 in both devices; and RSV in 16 of 18 in both devices. Of the 31 COVID-19 devices collected from The Royal Melbourne Hospital emergency department, 11 tested positive for a respiratory virus on rtPCR, including one device positive for influenza A virus, one positive for RSV, four positive for rhinovirus, and five positive for SARS-CoV-2. Sequences of target respiratory viruses from archival samples were detected in 55 (98·2%) of 56 samples from Panbio and 48 (85·7%) of 56 from Roche rapid antigen test devices. 98 (87·5%) of 112 viral genomes were completely assembled from these data, enabling subtyping for RSV and influenza viruses. All 11 samples collected from the emergency department had viral sequences detected, with near-complete genomes assembled for influenza A and RSV. INTERPRETATION: Non-SARS-CoV-2 respiratory viruses can be detected and sequenced from COVID-19 rapid antigen devices. Recovery of near full-length viral sequences from these devices provides a valuable opportunity to expand genomic surveillance programmes for public health monitoring of circulating respiratory viruses. FUNDING: Australian Government Medical Research Future Fund and Australian National Health and Medical Research Council.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus, Human , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Influenza, Human/diagnosis , COVID-19 Testing , Australia , Metapneumovirus/genetics , Respiratory Syncytial Virus, Human/genetics , Whole Genome Sequencing
6.
Lancet Microbe ; 4(10): e800-e810, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37722405

ABSTRACT

BACKGROUND: The 2022 outbreak of mpox (formerly known as monkeypox) led to the spread of monkeypox virus (MPXV) in over 110 countries, demanding effective disease management and surveillance. As current diagnostics rely largely on centralised laboratory testing, our objective was to develop a simple rapid point-of-care assay to detect MPXV in clinical samples using isothermal amplification coupled with CRISPR and CRISPR-associated protein (Cas) technology. METHODS: In this proof-of-concept study, we developed a portable isothermal amplification CRISPR-Cas12a-based assay for the detection of MPXV. We designed a panel of 22 primer-guide RNA sets using pangenome and gene-agnostic approaches, and subsequently shortlisted the three sets producing the strongest signals for evaluation of analytical sensitivity and specificity using a fluorescence-based readout. The set displaying 100% specificity and the lowest limit of detection (LOD) was selected for further assay validation using both a fluorescence-based and lateral-flow readout. Assay specificity was confirmed using a panel of viral and bacterial pathogens. Finally, we did a blind concordance study on genomic DNA extracted from 185 clinical samples, comparing assay results with a gold-standard quantitative PCR (qPCR) assay. We identified the optimal time to detection and analysed the performance of the assay relative to qPCR using receiver operating characteristic (ROC) curves. We also assessed the compatibility with lateral-flow strips, both visually and computationally, where strips were interpreted blinded to the fluorescence results on the basis of the presence or absence of test bands. FINDINGS: With an optimal run duration of approximately 45 min from isothermal amplification to CRISPR-assay readout, the MPXV recombinase polymerase amplification CRISPR-Cas12a-based assay with the selected primer-guide set had an LOD of 1 copy per µL and 100% specificity against tested viral pathogens. Blinded concordance testing of 185 clinical samples resulted in 100% sensitivity (95% CI 89·3-100) and 99·3% specificity (95% CI 95·7-100) using the fluorescence readout. For optimal time to detection by fluorescence readout, we estimated the areas under the ROC curve to be 0·98 at 2 min and 0·99 at 4 min. Lateral-flow strips had 100% sensitivity (89·3-100) and 98·6% specificity (94·7-100) with both visual and computational assessment. Overall, lateral-flow results were highly concordant with fluorescence-based readouts (179 of 185 tests, 96·8% concordant), with discrepancies associated with low viral load samples. INTERPRETATION: Our assay for the diagnosis of mpox displayed good performance characteristics compared with qPCR. Although optimisation of the assay will be required before deployment, its usability and versatility present a potential solution to MPXV detection in low-resource and remote settings, as well as a means of community-based, on-site testing. FUNDING: Victorian Medical Research Accelerator Fund and the Australian Government Department of Health.

7.
Microorganisms ; 11(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37630545

ABSTRACT

Serological diagnostic assays are essential tools for determining an individual's protection against viruses like SARS-CoV-2, tracking the spread of the virus in the community, and evaluating population immunity. To assess the diversity and quality of the anti-SARS-CoV-2 antibody response, we have compared the antibody profiles of people with mild, moderate, and severe COVID-19 using a dot blot assay. The test targeted the four major structural proteins of SARS-CoV-2, namely the nucleocapsid (N), spike (S) protein domains S1 and S2, and receptor-binding domain (RBD). Serum samples were collected from 63 participants at various time points for up to 300 days after disease onset. The dot blot assay revealed patient-specific differences in the anti-SARS-CoV-2 antibody profiles. Out of the 63 participants with confirmed SARS-CoV-2 infections and clinical COVID-19, 35/63 participants exhibited diverse and robust responses against the tested antigens, while 14/63 participants displayed either limited responses to a subset of antigens or no detectable antibody response to any of the antigens. Anti-N-specific antibody levels decreased within 300 days after disease onset, whereas anti-S-specific antibodies persisted. The dynamics of the antibody response did not change during the test period, indicating stable antibody profiles. Among the participants, 28/63 patients with restricted anti-S antibody profiles or undetectable anti-S antibody levels in the dot blot assay also exhibited weak neutralization activity, as measured by a surrogate virus neutralization test (sVNT) and a microneutralization test. These results indicate that in some cases, natural infections do not lead to the production of neutralizing antibodies. Furthermore, the study revealed significant serological variability among patients, regardless of the severity of their COVID-19 illness. These differences need to be carefully considered when evaluating the protective antibody status of individuals who have experienced primary SARS-CoV-2 infections.

8.
J Med Virol ; 95(8): e29029, 2023 08.
Article in English | MEDLINE | ID: mdl-37565686

ABSTRACT

The impact and frequency of infectious disease outbreaks demonstrate the need for timely genomic surveillance to inform public health responses. In the largest known outbreak of mpox, genomic surveillance efforts have primarily focused on high-incidence nations in Europe and the Americas, with a paucity of data from South-East Asia and the Western Pacific. Here we analyzed 102 monkeypox virus (MPXV) genomes sampled from 56 individuals in Melbourne, Australia. All genomes fell within the 2022 MPXV outbreak lineage (B.1), with likely onward local transmission detected. We observed within-host diversity and instances of co-infection, and highlight further examples of structural variation and apolipoprotein B editing complex-driven micro-evolution in the current MPXV outbreak. Updating our understanding of MPXV emergence and diversification will inform public health measures and enable monitoring of the virus' evolutionary trajectory throughout the mpox outbreak.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , Mpox (monkeypox)/epidemiology , Genomics , Disease Outbreaks , Australia/epidemiology
10.
J Med Virol ; 95(1): e28429, 2023 01.
Article in English | MEDLINE | ID: mdl-36571266

ABSTRACT

Mpox is a zoonotic disease caused by monkeypox virus (MPXV) from the Orthopoxvirus genus. Unprecedented transmission events have led to more than 70 000 cases reported worldwide by October 2022. The change in mpox epidemiology has raised concerns of its ability to establish endemicity beyond its traditional geographical locations. In this review, we discuss the current understanding of mpox virology and viral dynamics that are relevant to mpox diagnostics. A synopsis of the traditional and emerging laboratory technologies useful for MPXV detection and in guiding "elimination" strategies is outlined in this review. Importantly, development in MPXV genomics has rapidly advanced our understanding of the role of viral evolution and adaptation in the current outbreak.


Subject(s)
Mpox (monkeypox) , Orthopoxvirus , Animals , Humans , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus , Zoonoses , Disease Outbreaks
13.
Emerg Infect Dis ; 28(8): 1713-1715, 2022 08.
Article in English | MEDLINE | ID: mdl-35876533

ABSTRACT

During a mouse plague in early 2021, a farmer from New South Wales, Australia, sought treatment for aseptic meningitis and was subsequently diagnosed with locally acquired lymphocytic choriomeningitis virus infection. Whole-genome sequencing identified a divergent and geographically distinct lymphocytic choriomeningitis virus strain compared with other published sequences.


Subject(s)
Lymphocytic Choriomeningitis , Meningitis, Aseptic , Animals , Australia/epidemiology , Lymphocytic Choriomeningitis/diagnosis , Lymphocytic Choriomeningitis/epidemiology , Lymphocytic choriomeningitis virus/genetics , Mice , New South Wales/epidemiology
14.
Front Immunol ; 13: 883612, 2022.
Article in English | MEDLINE | ID: mdl-35655773

ABSTRACT

Plasma samples taken at different time points from donors who received either AstraZeneca (Vaxzevria) or Pfizer (Comirnaty) or Moderna (Spikevax) coronavirus disease-19 (COVID-19) vaccine were assessed in virus neutralization assays against Delta and Omicron variants of concern and a reference isolate (VIC31). With the Pfizer vaccine there was 6-8-fold reduction in 50% neutralizing antibody titres (NT50) against Delta and VIC31 at 6 months compared to 2 weeks after the second dose; followed by 25-fold increase at 2 weeks after the third dose. Neutralisation of Omicron was only consistently observed 2 weeks after the third dose, with most samples having titres below the limit of detection at earlier timepoints. Moderna results were similar to Pfizer at 2 weeks after the second dose, while the titres for AstraZeneca samples derived from older donors were 7-fold lower against VIC31 and below the limit of detection against Delta and Omicron. Age and gender were not found to significantly impact our results. These findings indicate that vaccine matching may be needed, and that at least a third dose of these vaccines is necessary to generate sufficient neutralising antibodies against emerging variants of concern, especially Omicron, amidst the challenges of ensuring vaccine equity worldwide.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccines, Inactivated
15.
Euro Surveill ; 27(22)2022 06.
Article in English | MEDLINE | ID: mdl-35656835

ABSTRACT

Rapid diagnosis and whole genome sequencing confirmed a case of monkeypox in an HIV-positive individual receiving antiretroviral therapy. The patient had a normal CD4+ T-cell count and suppressed HIV viral load and presented with a genital rash in Melbourne, Australia after return from Europe in May 2022. He subsequently developed systemic illness and disseminated rash and 11 days after symptom onset, he was hospitalised to manage painful bacterial cellulitis of the genital area.


Subject(s)
Exanthema , HIV Infections , Mpox (monkeypox) , Exanthema/etiology , Genitalia , HIV Infections/complications , HIV Infections/diagnosis , HIV Infections/drug therapy , Humans , Male , Mpox (monkeypox)/diagnosis , Viral Load
17.
Viruses ; 14(4)2022 04 13.
Article in English | MEDLINE | ID: mdl-35458530

ABSTRACT

As existing vaccines fail to completely prevent COVID-19 infections or community transmission, there is an unmet need for vaccines that can better combat SARS-CoV-2 variants of concern (VOC). We previously developed highly thermo-tolerant monomeric and trimeric receptor-binding domain derivatives that can withstand 100 °C for 90 min and 37 °C for four weeks and help eliminate cold-chain requirements. We show that mice immunised with these vaccine formulations elicit high titres of antibodies that neutralise SARS-CoV-2 variants VIC31 (with Spike: D614G mutation), Delta and Omicron (BA.1.1) VOC. Compared to VIC31, there was an average 14.4-fold reduction in neutralisation against BA.1.1 for the three monomeric antigen-adjuvant combinations and a 16.5-fold reduction for the three trimeric antigen-adjuvant combinations; the corresponding values against Delta were 2.5 and 3.0. Our findings suggest that monomeric formulations are suitable for upcoming Phase I human clinical trials and that there is potential for increasing the efficacy with vaccine matching to improve the responses against emerging variants. These findings are consistent with in silico modelling and AlphaFold predictions, which show that, while oligomeric presentation can be generally beneficial, it can make important epitopes inaccessible and also carries the risk of eliciting unwanted antibodies against the oligomerisation domain.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
19.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055020

ABSTRACT

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


Subject(s)
COVID-19/virology , Nasal Mucosa/cytology , Nasal Mucosa/virology , Tissue Culture Techniques/methods , Adolescent , Adult , Angiotensin-Converting Enzyme 2/metabolism , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Models, Biological , SARS-CoV-2 , Virus Internalization
20.
Open Forum Infect Dis ; 8(9): ofab359, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34514016

ABSTRACT

We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in a patient with lymphoma and recent programmed death 1 (PD-1) inhibitor therapy with late onset of severe coronavirus disease 2019 disease and prolonged SARS-CoV-2 replication, in comparison to age-matched and immunocompromised controls. High levels of HLA-DR+/CD38+ activation, interleukin 6, and interleukin 18 in the absence of B cells and PD-1 expression was observed. SARS-CoV-2-specific antibody responses were absent and SARS-CoV-2-specific T cells were minimally detected. This case highlights challenges in managing immunocompromised hosts who may fail to mount effective virus-specific immune responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...