Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Biotechnol ; 73: 95-100, 2022 02.
Article in English | MEDLINE | ID: mdl-34348217

ABSTRACT

New measures for reducing atmospheric CO2 are urgently needed. Formate dehydrogenases (FDHs, EC 1.17.1.9) catalyze conversion of CO2 to formate (HCOO-) via a reverse catalytic ability. This enzymatic conversion of CO2 represents a novel first step approach for biocatalytic carbon capture and utilization targeting both CO2 reduction and substitution of petrochemical-based production of important commodity chemicals. To achieve robust and efficient FDH catalyzed CO2 conversion for sustainable large-scale implementation, it is critical to focus on the efficacy of the electron donor, enzyme stabilization, and on how the desired reverse FDH reactivity can be enhanced. Recent advances include the realization that NADH, the most common natural cofactor for reverse FDH catalysis, is an inefficient electron donor for FDH catalyzed CO2 conversion. Improved understanding of the redox reaction details and structure-function relations of both metal-dependent and metal-independent FDHs provides the foundation for achieving rational technological advancements to promote enzymatic CO2 utilization.


Subject(s)
Carbon Dioxide , Formate Dehydrogenases , Biocatalysis , Catalysis , Formate Dehydrogenases/metabolism , Oxidation-Reduction
2.
mBio ; 12(4): e0032921, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34399608

ABSTRACT

The nicotinamide cofactor specificity of enzymes plays a key role in regulating metabolic processes and attaining cellular homeostasis. Multiple studies have used enzyme engineering tools or a directed evolution approach to switch the cofactor preference of specific oxidoreductases. However, whole-cell adaptation toward the emergence of novel cofactor regeneration routes has not been previously explored. To address this challenge, we used an Escherichia coli NADPH-auxotrophic strain. We continuously cultivated this strain under selective conditions. After 500 to 1,100 generations of adaptive evolution using different carbon sources, we isolated several strains capable of growing without an external NADPH source. Most isolated strains were found to harbor a mutated NAD+-dependent malic enzyme (MaeA). A single mutation in MaeA was found to switch cofactor specificity while lowering enzyme activity. Most mutated MaeA variants also harbored a second mutation that restored the catalytic efficiency of the enzyme. Remarkably, the best MaeA variants identified this way displayed overall superior kinetics relative to the wild-type variant with NAD+. In other evolved strains, the dihydrolipoamide dehydrogenase (Lpd) was mutated to accept NADP+, thus enabling the pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase complexes to regenerate NADPH. Interestingly, no other central metabolism oxidoreductase seems to evolve toward reducing NADP+, which we attribute to several biochemical constraints, including unfavorable thermodynamics. This study demonstrates the potential and biochemical limits of evolving oxidoreductases within the cellular context toward changing cofactor specificity, further showing that long-term adaptive evolution can optimize enzyme activity beyond what is achievable via rational design or directed evolution using small libraries. IMPORTANCE In the cell, NAD(H) and NADP(H) cofactors have different functions. The former mainly accepts electrons from catabolic reactions and carries them to respiration, while the latter provides reducing power for anabolism. Correspondingly, the ratio of the reduced to the oxidized form differs for NAD+ (low) and NADP+ (high), reflecting their distinct roles. We challenged the flexibility of E. coli's central metabolism in multiple adaptive evolution experiments using an NADPH-auxotrophic strain. We found several mutations in two enzymes, changing the cofactor preference of malic enzyme and dihydrolipoamide dehydrogenase. Upon deletion of their corresponding genes we performed additional evolution experiments which did not lead to the emergence of any additional mutants. We attribute this restricted number of mutational targets to intrinsic thermodynamic barriers; the high ratio of NADPH to NADP+ limits metabolic redox reactions that can regenerate NADPH, mainly by mass action constraints.


Subject(s)
Coenzymes/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Evolution, Molecular , NADP/metabolism , Oxidoreductases/metabolism , Carbon/metabolism , Coenzymes/genetics , Escherichia coli/genetics , Escherichia coli Proteins , Kinetics , Malate Dehydrogenase/metabolism , NAD/metabolism , Oxidoreductases/genetics
3.
ACS Catal ; 10(14): 7512-7525, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32733773

ABSTRACT

The efficient regeneration of cofactors is vital for the establishment of biocatalytic processes. Formate is an ideal electron donor for cofactor regeneration due to its general availability, low reduction potential, and benign byproduct (CO2). However, formate dehydrogenases (FDHs) are usually specific to NAD+, such that NADPH regeneration with formate is challenging. Previous studies reported naturally occurring FDHs or engineered FDHs that accept NADP+, but these enzymes show low kinetic efficiencies and specificities. Here, we harness the power of natural selection to engineer FDH variants to simultaneously optimize three properties: kinetic efficiency with NADP+, specificity toward NADP+, and affinity toward formate. By simultaneously mutating multiple residues of FDH from Pseudomonas sp. 101, which exhibits practically no activity toward NADP+, we generate a library of >106 variants. We introduce this library into an E. coli strain that cannot produce NADPH. By selecting for growth with formate as the sole NADPH source, we isolate several enzyme variants that support efficient NADPH regeneration. We find that the kinetically superior enzyme variant, harboring five mutations, has 5-fold higher efficiency and 14-fold higher specificity in comparison to the best enzyme previously engineered, while retaining high affinity toward formate. By using molecular dynamics simulations, we reveal the contribution of each mutation to the superior kinetics of this variant. We further determine how nonadditive epistatic effects improve multiple parameters simultaneously. Our work demonstrates the capacity of in vivo selection to identify highly proficient enzyme variants carrying multiple mutations which would be almost impossible to find using conventional screening methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...