Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799597

ABSTRACT

BACKGROUND: Activation of the phosphoinositide-3 kinase (PI3K) pathway is a resistance mechanism to anti-human epidermal growth factor receptor 2 (HER2) therapy. This phase Ib trial was conducted to determine the maximum tolerated dose (MTD) of copanlisib, an intravenous (IV) pan-class I PI3K inhibitor, combined with trastuzumab. METHODS: Patients with advanced HER2-positive breast cancer and disease progression following at least one prior line of HER2 therapy in the metastatic setting were treated with copanlisib (45 or 60 mg) IV on days 1, 8 and 15 of a 28-day cycle with a fixed dose of trastuzumab 2 mg/kg weekly. RESULTS: Twelve patients were enrolled. The MTD was determined as copanlisib 60 mg plus trastuzumab 2 mg/kg weekly. The most common adverse events of any grade occurring in more than two patients were hyperglycaemia (58%), fatigue (58%), nausea (58%) and hypertension (50%). Stable disease was confirmed at 16 weeks in six participants (50%). PIK3CA mutations were detected in archival tumour of six participants (50%). PIK3CA hotspot mutations, were detectable in pre- and on-treatment plasma of all participants. Pre- and post-treatment tumour biopsies for two patients identified temporal genomic heterogeneity, somatic mutations in the TRRAP gene, which encodes a PI3K-like protein kinase, and emergent somatic mutations related to protein kinase signalling. CONCLUSION: Copanlisib and trastuzumab can be safely administered with fair overall tolerability. Preliminary evidence of tumour stability was observed in patients with heavily pre-treated, metastatic HER2 positive breast cancer. Several potential biomarkers were identified for further study in the current phase 2 clinical trial. NCT: 02705859.

2.
Proteomics Clin Appl ; 9(5-6): 568-73, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25471207

ABSTRACT

PURPOSE: Urinary extracellular vesicles (UEVs) are a novel source for disease biomarker discovery. However, Tamm-Horsfall protein (THP) is still a challenge for proteomic analysis since it can inhibit detection of low-abundance proteins. Here, we introduce a new approach that does not involve an ultracentrifugation step to enrich vesicles and that reduces the amount of THP to manageable levels. EXPERIMENTAL DESIGN: UEVs were dialyzed and ultrafiltered after reduction and alkylation. The retained fraction was digested with trypsin to reduce the remaining THP and incubated with deoxycholate (DOC). The internal peptidome and internal proteome were analyzed by LC-ESI-MS. RESULTS: A total of 942 different proteins and 3115 unique endogenous peptide fragments deriving from 973 different protein isoforms were identified. Around 82% of the key endosomal sorting complex required for transport components of UEVs generation could be detected from the intraluminal content. CONCLUSIONS AND CLINICAL RELEVANCE: Our UEVs preparation protocol provides a simplified way to investigate the intraluminal proteome and peptidome, in particular the subpopulation of UEVs of the trypsin-resistant class of exosomes (positive for tumor susceptibility gene101) and eliminates the majority of interfering proteins such as THP. This method allows the possibility to study endoproteome and endopeptidome of UEVs, thus greatly facilitating biomarker discovery.


Subject(s)
Extracellular Vesicles/metabolism , Peptide Fragments/urine , Proteome/metabolism , Urinalysis/methods , Humans , Peptide Fragments/isolation & purification , Proteome/isolation & purification , Ultrafiltration
3.
Sci Rep ; 4: 7532, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25532487

ABSTRACT

Urinary extracellular vesicles provide a novel source for valuable biomarkers for kidney and urogenital diseases: Current isolation protocols include laborious, sequential centrifugation steps which hampers their widespread research and clinical use. Furthermore, large individual urine sample volumes or sizable target cohorts are to be processed (e.g. for biobanking), the storage capacity is an additional problem. Thus, alternative methods are necessary to overcome such limitations. We have developed a practical vesicle isolation technique to yield easily manageable sample volumes in an exceptionally cost efficient way to facilitate their full utilization in less privileged environments and maximize the benefit of biobanking. Urinary vesicles were isolated by hydrostatic dialysis with minimal interference of soluble proteins or vesicle loss. Large volumes of urine were concentrated up to 1/100 of original volume and the dialysis step allowed equalization of urine physico-chemical characteristics. Vesicle fractions were found suitable to any applications, including RNA analysis. In the yield, our hydrostatic filtration dialysis system outperforms the conventional ultracentrifugation-based methods and the labour intensive and potentially hazardous step of ultracentrifugations are eliminated. Likewise, the need for trained laboratory personnel and heavy initial investment is avoided. Thus, our method qualifies as a method for laboratories working with urinary vesicles and biobanking.


Subject(s)
Biological Specimen Banks , Cell-Derived Microparticles , Genital Diseases, Female/urine , Genital Diseases, Male/urine , Preservation, Biological/methods , Urologic Diseases/urine , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...