Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Biol (Stuttg) ; 20(5): 870-878, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29762883

ABSTRACT

Despite the great diversity of plant growth-promoting bacteria (PGPB) with potential to partially replace the use of N fertilisers in agriculture, few PGPB have been explored for the production of commercial inoculants, reinforcing the importance of identifying positive plant-bacteria interactions. Aiming to better understand the influence of PGPB inoculation in plant development, two PGPB species with distant phylogenetic relationship were inoculated in maize. Maize seeds were inoculated with Bacillus sp. or Azospirillum brasilense. After germination, the plants were subjected to two N treatments: full (N+) and limiting (N-) N supply. Then, anatomical, biometric and physiological analyses were performed. Both PGPB species modified the anatomical pattern of roots, as verified by the higher metaxylem vessel element (MVE) number. Bacillus sp. also increased the MVE area in maize roots. Under N+ conditions, both PGPB decreased leaf protein content and led to development of shorter roots; however, Bacillus sp. increased root and shoot dry weight, whereas A. brasilense increased photosynthesis rate and leaf nitrate content. In plants subjected to N limitation (N-), photosynthesis rate and photosystem II efficiency increased in maize inoculated with Bacillus sp., whilst A. brasilense contained higher ammonium, amino acids and total soluble sugars in leaves, compared to the control. Plant developmental and metabolical patterns were switched by the inoculation, regardless of the inoculant bacterium used, producing similar as well as distinct modifications to the parameters studied. These results indicate that even non-diazotrophic inoculant strains can improve the plant N status as result of the morpho-anatomical and physiological modifications produced by the PGPB.


Subject(s)
Azospirillum brasilense/metabolism , Bacillus/metabolism , Nitrogen/pharmacology , Plant Roots/anatomy & histology , Zea mays/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Zea mays/growth & development , Zea mays/metabolism , Zea mays/physiology
2.
Plant Biol (Stuttg) ; 19(5): 720-727, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28637094

ABSTRACT

The re-composition of deforested environments requires the prior acclimation of seedlings to full sun in nurseries. Seedlings can overcome excess light either through the acclimation of pre-existing fully expanded leaves or through the development of new leaves that are acclimated to the new light environment. Here, we compared the acclimation capacity of mature (MatL, fully expanded at the time of transfer) and newly expanded (NewL, expanded after the light shift) leaves of Guazuma ulmifolia Lam. (Malvaceae) seedlings to high light. The seedlings were initially grown under shade and then transferred to full sunlight. MatL and NewL were used for chlorophyll fluorescence and gas exchange analyses, pigment extraction and morpho-anatomical measurements. After the transfer of seedlings to full sun, the MatL persisted and acclimated to some extent to the new light condition, since they underwent alterations in some morpho-physiological traits and maintained a functional electron transport chain and positive net photosynthesis rate. However, long-term exposure to high light led to chronic photoinhibition in MatL, which could be related to the limited plasticity of leaf morpho-anatomical attributes. However, the NewL showed a high capacity to use the absorbed energy in photochemistry and dissipate excess energy harmlessly, attributes that were favoured by the high structural plasticity exhibited by these leaves. Both the maintenance of mature, photosynthetically active leaves and the production of new leaves with a high capacity to cope with excess energy were important for acclimation of G. ulmifolia seedlings.


Subject(s)
Acclimatization/physiology , Light , Malvaceae/growth & development , Chlorophyll/metabolism , Malvaceae/metabolism , Malvaceae/radiation effects , Photosynthesis , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Rainforest
SELECTION OF CITATIONS
SEARCH DETAIL
...