Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
3.
Exp Clin Psychopharmacol ; 30(6): 751-759, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34735205

ABSTRACT

The interest in psychedelic substances as potential treatments for psychiatric disorders is increasing. The ß-carboline harmine, an Ayahuasca component, presents hallucinogenic and antidepressant effects. Although Ayuahuasca-and consequently harmine-is usually consumed in rituals, the role of social contexts in the behavioral effects of harmine has not been investigated yet. In this sense, affective states may modulate cohabitants' behavior, including learning/memory. This work investigates the effects of harmine on the learning/memory performance of rats evaluated on the contextual and tone fear conditioning (CFC and TFC) and on the plus-maze discriminative avoidance (PMDAT) tasks. The possible influence of a harmine-treated cohabitant was assessed by evaluating rats housed in homogeneous cages-where all the animals were acutely administered with the same treatment (vehicle, 5, 10, or 15 mg/kg harmine), and in heterogeneous cages-where each animal received a different drug treatment. The main results are: (a) harmine impaired CFC (10 mg/kg) and PMDAT discrimination (all doses); and (b) harmine caused a memory deficit in CFC, TFC, and PMDAT of untreated rats kept in heterogeneous cages. Our results show that harmine induces a memory deficit in tasks with emotional contexts. Further, the cohabitation with animals treated with this drug also seems to impair memory performance of untreated animals. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Subject(s)
Emotions , Harmine , Rats , Animals , Harmine/pharmacology , Cognition , Fear , Memory Disorders
4.
Medicine (Baltimore) ; 100(39): e27192, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34596116

ABSTRACT

ABSTRACT: The presynaptic dopamine transporter (DAT) modulates the uptake of dopamine by regulating its concentration in the central nervous system. We aimed to evaluate the DAT binding potential (DAT-BP) in a sample of healthy Brazilians through technetium-99 metastable TRODAT-1 single-photon emission computed tomography imaging.We selected 126 healthy individuals comprising 72 men and 54 women, aged 18 to 80 years. We conducted semi-quantitative evaluation in transaxial slices, following which we identified the regions of interest in the striatal region using the occipital lobe as a region of non-specific DAT-BP.We found a decrease in DAT-BP in healthy individuals aged over 30 years, culminating in a 42% mean reduction after 80 years. There was no difference in the decrease by age group between the right (linear regression test [R2] linear = 0.466) and left striatum (R2 linear = 0.510). Women presented a higher DAT-BP than men (women: R2 linear = 0.431; men: R2 linear = 0.457); nonetheless, their decrease by age group was equal to that in men.Our study sheds light on important DAT-BP findings in healthy Brazilian subjects. Our results will facilitate understanding of brain illnesses that involve the dopamine system, such as neuropsychiatric disorders.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Organotechnetium Compounds , Radiopharmaceuticals , Tomography, Emission-Computed, Single-Photon/methods , Tropanes , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Humans , Male , Middle Aged , Reference Values , Young Adult
5.
Behav Brain Res ; 391: 112674, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32417274

ABSTRACT

Obstetric complications, like maternal hypertension and neonatal hypoxia, disrupt brain development, leading to psychiatry disorders later in life, like schizophrenia. The exact mechanisms behind this risk are not yet well known. Spontaneously hypertensive rats (SHR) are a well-established model to study neurodevelopment of schizophrenia since they exhibit behavioral alterations mimicking schizophrenia that can be improved with antipsychotic drugs. SHR mothers are hypertensive, and the SHR offspring develop in preeclampsia-like conditions. Hypoxic conditions increase levels of adenosine, which play an important role in brain development. The enhanced levels of adenosine at birth could be related to the future development of schizophrenia. To investigate this hypothesis adenosine levels of brain neonatal Wistar rats and SHR were quantified. After that, caffeine, an antagonist of adenosinergic system, was administrated on PND (postnatal day) 7 (neurodevelopmental age similar to a human at delivery) and rats were observed at adolescent and adult ages. We also investigated the acute effects of caffeine at adolescent and adult ages. SHR control adolescent and adult groups presented behavioral deficits like hyperlocomotion, deficit in social interaction (SI), and contextual fear conditioning (CFC). In SHR, neonatal caffeine treatment on PND 7 normalized hyperlocomotion, improved SI, and CFC observed at adolescent period and adult ages, showing a beneficial effect on schizophrenia-like behaviors. Wistar rats neonatally treated with caffeine exhibited hyperlocomotion, deficit in SI and CFC when observed at adolescent and adult ages. Acutely caffeine treatment administrated at adolescent and adult ages increased locomotion and decreased SI time of Wistar rats and impair CFC in adult Wistars. No effects were observed in SHR. In conclusion, caffeine can be suggested as a useful drug to prevent behavioral deficits observed in this animal model of prenatal hypoxia-induced schizophrenia profile when specifically administered on PND 7.


Subject(s)
Caffeine/pharmacology , Schizophrenia/drug therapy , Schizophrenia/physiopathology , Adenosine/analysis , Animals , Animals, Newborn/metabolism , Disease Models, Animal , Locomotion/drug effects , Male , Motor Activity/drug effects , Rats , Rats, Inbred SHR , Rats, Wistar , Schizophrenia/metabolism
6.
Article in English | MEDLINE | ID: mdl-30500412

ABSTRACT

The Spontaneously Hypertensive Rat (SHR) strain has been suggested as an animal model of schizophrenia, considering that adult SHRs display behavioral abnormalities that mimic the cognitive, psychotic and negative symptoms of the disease and are characteristic of its animal models. SHRs display: (I) deficits in fear conditioning and latent inhibition (modeling cognitive impairments), (II) deficit in prepulse inhibition of startle reflex (reflecting a deficit in sensorimotor gating, and associated with psychotic symptoms), (III) diminished social behavior (modeling negative symptoms) and (IV) hyperlocomotion (modeling the hyperactivity of the dopaminergic mesolimbic system/ psychotic symptoms). These behavioral abnormalities are reversed specifically by the administration of antipsychotic drugs. Here, we performed a behavioral characterization of young (27-50 days old) SHRs in order to investigate potential early behavioral abnormalities resembling the prodromal phase of schizophrenia. When compared to Wistar rats, young SHRs did not display hyperlocomotion or PPI deficit, but exhibited diminished social interaction and impaired fear conditioning and latent inhibition. These findings are in accordance with the clinical course of schizophrenia: manifestation of social and cognitive impairments and absence of full-blown psychotic symptoms in the prodromal phase. The present data reinforce the SHR strain as a model of schizophrenia, expanding its validity to the prodromal phase of the disorder.


Subject(s)
Disease Models, Animal , Prodromal Symptoms , Rats, Inbred SHR , Schizophrenia , Animals , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Male , Motor Activity , Prepulse Inhibition/drug effects , Rats, Wistar , Reflex, Startle/drug effects , Schizophrenia/drug therapy , Schizophrenia/physiopathology
7.
Pharmacol Biochem Behav ; 173: 90-95, 2018 10.
Article in English | MEDLINE | ID: mdl-30031027

ABSTRACT

Opioid addiction is a growing public health problem, being currently considered an epidemic in the United States. Investigating the behavioral effects of opioids and the factors influencing their development becomes of major importance. In animals, the effects of drugs of abuse can be assessed using the behavioral sensitization model, which shares similar neuronal substrates with drug craving in humans. Importantly, novelty plays a critical role on the development of behavioral sensitization. The aim of the present study was to investigate the influence of a new environment on both the induction and expression phases of morphine (Mor)-induced behavioral sensitization in the two-injection protocol. Mice were initially treated with saline, 15 or 30 mg/kg Mor (induction phase), and subsequently challenged 7 days later with 15 mg/Kg Mor (expression phase). Locomotor frequency was evaluated during behavioral sessions, performed as follow: induction session on a novel environment and expression on a familiar open-filed apparatus; induction session on animals' home-cage (familiar environment) and expression session on an unknown open-filed apparatus; both sessions on novel environments; and both sessions on familiar contexts. Mor-induced behavioral sensitization was only observed when animals were exclusively exposed to novelty during the induction phase, not being observed when both the induction and expression sessions were performed on similar (novel or familiar) environments. Our results suggest that the development of behavioral sensitization to Mor depends on the exposure to novelty during the induction phase and absence of novelty during the expression phase, indicating a complex relationship between novelty and Mor-induced behavioral effects.


Subject(s)
Behavior, Animal/drug effects , Morphine/pharmacology , Animals , Male , Mice , Motor Activity/drug effects
8.
Neurosci Biobehav Rev ; 84: 29-34, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29079493

ABSTRACT

Schizophrenia is associated with an increased mortality from cardiovascular disease. Relatively few studies have assessed the putative association of schizophrenia pathophysiology with sudden death. Low adenosine levels have been associated with schizophrenia. In cardiology, increased mortality among patients with congestive heart failure has been associated with genetic polymorphisms that potentially lead to lower adenosine levels. Thus, we hypothesize that adenosine could link schizophrenia and cardiovascular mortality, with decreased adenosine levels leading to increased vulnerability to hyperexcitability following hypoxic insults, increasing the odds of fatal arrhythmias. Low adenosine levels might also lead to a small increase in overall mortality rates and a major increase in the sudden death rate. This hypothesis paves the way for further investigation of the increased cardiac mortality associated with schizophrenia. Potentially, a better characterization of adenosine-related mechanisms of sudden death in schizophrenia could lead to new evidence of factors leading to sudden death in the general population.


Subject(s)
Adenosine/deficiency , Death, Sudden, Cardiac/epidemiology , Schizophrenia/epidemiology , Schizophrenia/mortality , Comorbidity , Humans
9.
Schizophr Res ; 153(1-3): 150-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24556469

ABSTRACT

Studies have suggested that the endocannabinoid system is implicated in the pathophysiology of schizophrenia. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs display hyperlocomotion - reverted by atypical and typical antipsychotics. These results suggest that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia and the effects of potential drugs with an antipsychotic profile. The aim of this study was to investigate the effects of WIN55-212,2 (CB1/CB2 agonist), ACEA (CB1 agonist), rimonabant (CB1 inverse agonist), AM404 (anandamide uptake/metabolism inhibitor), capsaicin (agonist TRPV1) and capsazepine (antagonist TRPV1) on the social interaction and locomotion of control animals (Wistar rats) and SHRs. The treatment with rimonabant was not able to alter either the social interaction or the locomotion presented by Wistar rats (WR) and SHR at any dose tested. The treatment with WIN55-212,2 decreased locomotion (1mg/kg) and social interaction (0.1 and 0.3mg/kg) of WR, while the dose of 1mg/kg increased social interaction of SHR. The treatment with ACEA increased (0.3mg/kg) and decreased (1mg/kg) locomotion of both strain. The administration of AM404 increased social interaction and decreased locomotion of SHR (5mg/kg), and decreased social interaction and increased locomotion in WR (1mg/kg). The treatment with capsaicin (2.5mg/kg) increased social interaction of both strain and decreased locomotion of SHR (2.5mg/kg) and WR (0.5mg/kg and 2.5mg/kg). In addition, capsazepine (5mg/kg) decreased locomotion of both strains and increased (5mg/kg) and decreased (10mg/kg) social interaction of WR. Our results indicate that the schizophrenia-like behaviors displayed by SHR are differently altered by cannabinoid and vanilloid drugs when compared to control animals and suggest the endocannabinoid and the vanilloid systems as a potential target for the treatment of schizophrenia.


Subject(s)
Cannabinoid Receptor Modulators/therapeutic use , Interpersonal Relations , Motor Activity/drug effects , Schizophrenia/drug therapy , Schizophrenic Psychology , TRPV Cation Channels/metabolism , Analysis of Variance , Animals , Arachidonic Acids/administration & dosage , Benzoxazines/administration & dosage , Capsaicin/analogs & derivatives , Capsaicin/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Morpholines/administration & dosage , Naphthalenes/administration & dosage , Piperidines/therapeutic use , Pyrazoles/therapeutic use , Rats , Rats, Inbred SHR , Rats, Wistar , Rimonabant , Schizophrenia/physiopathology , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors
10.
Front Pharmacol ; 5: 10, 2014.
Article in English | MEDLINE | ID: mdl-24567721

ABSTRACT

Clinical and neurobiological findings suggest that the cannabinoids and the endocannabinoid system may be implicated in the pathophysiology and treatment of schizophrenia. We described that the spontaneously hypertensive rats (SHR) strain presents a schizophrenia behavioral phenotype that is specifically attenuated by antipsychotic drugs, and potentiated by proschizophrenia manipulations. Based on these findings, we have suggested this strain as an animal model of schizophrenia. The aim of this study was to evaluate the effects of cannabinoid drugs on the deficit of prepulse inhibition (PPI) of startle, the main paradigm used to study sensorimotor gating impairment related to schizophrenia, presented by the SHR strain. The following drugs were used: (1) WIN55212,2 (cannabinoid agonist), (2) rimonabant (CB1 antagonist), (3) AM404 (anandamide uptake inhibitor), and (4) cannabidiol (CBD; indirect CB1/CB2 receptor antagonist, among other effects). Wistar rats (WRs) and SHRs were treated with vehicle (VEH) or different doses of WIN55212 (0.3, 1, or 3 mg/kg), rimonabant (0.75, 1.5, or 3 mg/kg), AM404 (1, 5, or 10 mg/kg), or CBD (15, 30, or 60 mg/kg). VEH-treated SHRs showed a decreased PPI when compared to WRs. This PPI deficit was reversed by 1 mg/kg WIN and 30 mg/kg CBD. Conversely, 0.75 mg/kg rimonabant decreased PPI in SHR strain, whereas AM404 did not modify it. Our results reinforce the role of the endocannabinoid system in the sensorimotor gating impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic strategies.

11.
Article in English | MEDLINE | ID: mdl-23127569

ABSTRACT

Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs present a hyperlocomotion that is reverted by typical and atypical antipsychotics, suggesting that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia as well as the effects of potential antipsychotics drugs. At the same time, an increase in social interaction in control animals similar to that induced by benzodiazepines is used to screen potential anxiolytic drugs. The aim of this study was to investigate the effects of CBD on social interaction presented by control animals (Wistar) and SHRs. The lowest dose of CBD (1mg/kg) increased passive and total social interaction of Wistar rats. However, the hyperlocomotion and the deficit in social interaction displayed by SHRs were not altered by any dose of CBD. Our results do not support an antipsychotic property of cannabidiol on symptoms-like behaviors in SHRs but reinforce the anxiolytic profile of this compound in control rats.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antipsychotic Agents/pharmacology , Cannabidiol/pharmacology , Interpersonal Relations , Motor Activity/drug effects , Animals , Male , Motor Activity/physiology , Rats , Rats, Inbred SHR , Rats, Wistar
12.
Psychopharmacology (Berl) ; 224(2): 337-45, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22700036

ABSTRACT

RATIONALE: Some evidence suggests a hyperdopaminergic state in posttraumatic stress disorder (PTSD). The 9-repetition allele (9R) located in the 3' untranslated region of the dopamine transporter (DAT) gene (SLC6A3) is more frequent among PTSD patients. In vivo molecular imaging studies have shown that healthy 9R carriers have increased striatal DAT binding. However, no prior study evaluated in vivo striatal DAT density in PTSD. OBJECTIVES: The objective of this study was to evaluate in vivo striatal DAT density in PTSD. METHODS: Twenty-one PTSD subjects and 21 control subjects, who were traumatized but asymptomatic, closely matched comparison subjects evaluated with the Clinician-Administered PTSD Scale underwent a single-photon emission computed tomography scan with [(99m)TC]-TRODAT-1. DAT binding potential (DAT-BP) was calculated using the striatum as the region of the interest and the occipital cortex as a reference region. RESULTS: PTSD patients had greater bilateral striatal DAT-BP (mean ± SD; left, 1.80 ± 0.42; right, 1.78 ± 0.40) than traumatized control subjects (left, 1.62 ± 0.32; right, 1.61 ± 0.31; p = 0.039 for the left striatum and p = 0.032 for the right striatum). CONCLUSIONS: These results provide the first in vivo evidence for increased DAT density in PTSD. Increases in DAT density may reflect higher dopamine turnover in PTSD, which could contribute to the perpetuation and potentiation of exaggerated fear responses to a given event associated with the traumatic experience. Situations that resemble the traumatic event turn to be interpreted as highly salient (driving attention, arousal, and motivation) in detriment of other daily situations.


Subject(s)
Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Stress Disorders, Post-Traumatic/physiopathology , Adolescent , Adult , Corpus Striatum/diagnostic imaging , Dopamine/metabolism , Female , Humans , Male , Middle Aged , Organotechnetium Compounds , Radiopharmaceuticals , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/metabolism , Tomography, Emission-Computed, Single-Photon , Tropanes , Young Adult
13.
Curr Pharm Des ; 18(32): 4960-5, 2012.
Article in English | MEDLINE | ID: mdl-22716146

ABSTRACT

OBJECTIVES: Clinical and neurobiological findings suggest that cannabinoids and their receptors are implicated in schizophrenia. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects. We have recently reported that spontaneously hypertensive rats (SHR) present a deficit in contextual fear conditioning (CFC) that is specifically ameliorated by antipsychotics and aggravated by proschizophrenia manipulations. These results led us to suggest that the CFC deficit presented by SHR could be used as a model to study emotional processing impairment in schizophrenia. The aim of this study is to evaluate the effects of CBD and rimonabant (CB1 receptor antagonist) on the contextual fear conditioning in SHR and Wistar rats (WR). METHODS: Rats were submitted to CFC task after treatment with different doses of CBD (experiment 1) and rimonabant (experiment 2). RESULTS: In experiment 1, SHR showed a decreased freezing response when compared to WR that was attenuated by 1 mg/kg CBD. Moreover, all CBD-treated WR presented a decreased freezing response when compared to control rats. In experiment 2, SHR showed a decreased freezing response when compared to WR that was attenuated by 3 mg/kg rimonabant. DISCUSSION: Our results suggest a potential therapeutical effect of CBD and rimonabant to treat the emotional processing impairment presented in schizophrenia. In addition, our results reinforce the anxiolytic profile of CBD.


Subject(s)
Cannabidiol/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Disease Models, Animal , Emotions , Piperidines/pharmacology , Pyrazoles/pharmacology , Schizophrenia/drug therapy , Schizophrenic Psychology , Animals , Cannabidiol/therapeutic use , Cannabinoid Receptor Antagonists/therapeutic use , Male , Piperidines/therapeutic use , Pyrazoles/therapeutic use , Rats, Wistar , Rimonabant
14.
Behav Brain Res ; 225(1): 15-22, 2011 Nov 20.
Article in English | MEDLINE | ID: mdl-21741413

ABSTRACT

We have recently reported that spontaneously hypertensive rats (SHRs) exhibit a deficit in contextual fear conditioning that is specifically reversed by antipsychotic and potentiated by psychostimulants and other manipulations thought to produce schizophrenia-like states in rodents. Based on these findings, we suggested that this deficit in fear conditioning could be used as an experimental model of emotional processing impairments observed in schizophrenia. This strain has also been suggested as a model by which to study attention deficit/hyperactivity disorder (ADHD). Considering that schizophrenia and ADHD are both characterized by poor social function, this study aimed to investigate possible behavioral deficits of SHRs in a social context. Furthermore, we sought to examine the effects of typical and atypical antipsychotics (used for the treatment of schizophrenia) and a psychostimulant (used to treat ADHD) on these behaviors. Pairs of unfamiliar rats of the same or different (i.e., Wistar) strains were treated with one of the aforementioned drugs and placed in an open-field for 10min. During this time, social behaviors, locomotion and rearing frequencies were scored. Atypical antipsychotics increased social interaction in Wistar rats (WRs) and improved the deficit in social interaction exhibited by SHRs. In addition, the SHR group displayed hyperlocomotion that was attenuated by all antipsychotics (quetiapine and clozapine also decreased locomotion in WRs) and potentiated by amphetamine (which also increased locomotion in WRs). Our results reveal that the behavioral profile of the SHR group demonstrates that this strain can be a useful animal model to study several aspects of schizophrenia.


Subject(s)
Amphetamine/pharmacology , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Rats, Inbred SHR/physiology , Social Behavior , Analysis of Variance , Animals , Drug Interactions , Exploratory Behavior/drug effects , Male , Motor Activity/drug effects , Motor Activity/genetics , Rats
15.
Prog Neuropsychopharmacol Biol Psychiatry ; 35(7): 1748-52, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21693159

ABSTRACT

Deficits in an operational measure of sensorimotor gating - the prepulse inhibition of startle (PPI) - are presented in psychiatric disorders such as schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). Some previous studies showed that the spontaneously hypertensive rats (SHR) present PPI deficit. Although SHR is suggested as an animal model to study ADHD, we have suggested that the behavioral phenotype of this strain mimics some aspects of schizophrenia. The aim of this study was to characterize the PPI response in SHR. Pharmacological characterization consisted in the evaluation of the effects of the following drugs administered to adult Wistar rats (WR) and SHR previously to the PPI test: amphetamine (used for ADHD and also a psychotomimetic drug), haloperidol and clozapine (antipsychotic drugs), metoclopramide (dopamine antagonist without antipsychotic properties) and carbamazepine (mood stabilizer). Our results showed that SHR presented reduced PPI. This deficit was similar to that induced by amphetamine in WR. Only the atypical antipsychotic clozapine improved the PPI deficit observed in SHR. These findings reinforce the SHR strain as an animal model to study several aspects of schizophrenia, including the abnormalities in sensorimotor gating associated with this disease.


Subject(s)
Antipsychotic Agents/pharmacology , Reflex, Startle/physiology , Schizophrenia/drug therapy , Sensory Gating/physiology , Acoustic Stimulation , Amphetamine/pharmacology , Amphetamine/therapeutic use , Animals , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Carbamazepine/pharmacology , Carbamazepine/therapeutic use , Clozapine/pharmacology , Clozapine/therapeutic use , Disease Models, Animal , Dopamine Antagonists/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Male , Metoclopramide/pharmacology , Metoclopramide/therapeutic use , Rats , Rats, Inbred SHR , Rats, Wistar , Reflex, Startle/drug effects , Schizophrenia/physiopathology , Sensory Gating/drug effects
16.
Prog Neuropsychopharmacol Biol Psychiatry ; 35(7): 1607-11, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21708209

ABSTRACT

OBJECTIVES: We have recently reported that spontaneously hypertensive rats (SHR) present a contextual fear conditioning (CFC) deficit. This deficit is improved by antipsychotic drugs, potentiated by proschizophrenia manipulations and not altered by acute administration of carbamazepine, lamotrigine and valproic acid. Nevertheless, the effects of lithium-a classical mood stabilizer-or repeated treatment with these drugs were not evaluated. The main aim of the present study was to extend our previous work by investigating a possible beneficial effect of acute and/or chronic treatments with lithium or lamotrigine on the acquisition deficit of CFC presented by SHR. METHODS: Rats were submitted to CFC task after an acute treatment with lithium and/or a repeated treatment with lithium and lamotrigine. RESULTS: Our data revealed that the CFC deficit presented by SHR is not improved by acute or repeated treatment with lithium. Repeated lamotrigine treatment potentiated the deficit presented by SHR and impaired CFC in control animals (Wistar Rats). CONCLUSIONS: These data reinforce the absence of beneficial effects of mood stabilizers on the emotional context processing impairment modeled by SHR.


Subject(s)
Affect/physiology , Antimanic Agents/pharmacology , Conditioning, Psychological/physiology , Fear/physiology , Lithium Carbonate/pharmacology , Locomotion/drug effects , Mood Disorders/physiopathology , Affect/drug effects , Animals , Antimanic Agents/therapeutic use , Conditioning, Psychological/drug effects , Fear/drug effects , Lithium Carbonate/therapeutic use , Locomotion/physiology , Male , Mood Disorders/drug therapy , Rats , Rats, Inbred SHR , Rats, Wistar
17.
Pharmacol Biochem Behav ; 98(2): 320-4, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21277887

ABSTRACT

Drug-induced behavioral sensitization in rodents has enhanced our understanding of why drugs acquire increasing motivational and incentive value. Compared to adults, human adolescents have accelerated dependence courses with shorter times from first exposure to dependence. We compared adolescent and adult mice in their ability to develop behavioral sensitization to amphetamine following a single injection. Adult (90-day-old) and adolescent (45-day-old) male Swiss mice received an acute intraperitoneal injection of saline or amphetamine (1.0, 2.0 or 4.0 mg/kg). Seven days later, half of the mice from the saline group received a second injection of saline. The remaining animals were challenged with 2.0 mg/kg amphetamine. Following all of the injections, mice were placed in activity chambers and locomotion was quantified for 45 min. The magnitude of both the acute and sensitized locomotor stimulatory effect of amphetamine was higher in the adolescent mice. Previous experience with the test environment inhibited the acute amphetamine stimulation in both adolescent and adult mice, but facilitated the detection of elevated spontaneous locomotion in adolescent animals. These results support the notion that the adolescent period is associated with an increased risk for development of drug abuse. Additionally, they indicate a complex interaction between the environmental novelty, adolescence and amphetamine.


Subject(s)
Amphetamine-Related Disorders/etiology , Amphetamine-Related Disorders/psychology , Amphetamine/administration & dosage , Behavior, Animal/drug effects , Behavior, Animal/physiology , Sexual Maturation/physiology , Adolescent , Adult , Animals , Behavior, Addictive/physiopathology , Behavior, Addictive/psychology , Disease Models, Animal , Humans , Injections, Intraperitoneal , Male , Mice , Motor Activity/drug effects , Motor Activity/physiology
18.
Schizophr Bull ; 35(4): 748-59, 2009 Jul.
Article in English | MEDLINE | ID: mdl-18281713

ABSTRACT

Schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD) present abnormalities in emotion processing. A previous study showed that the spontaneously hypertensive rats (SHR), a putative animal model of ADHD, present reduced contextual fear conditioning (CFC). The aim of the present study was to characterize the deficit in CFC presented by SHR. Adult male normotensive Wistar rats and SHR were submitted to the CFC task. Sensitivity of the animals to the shock and the CFC performance after repeated exposure to the task were investigated. Pharmacological characterization consisted in the evaluation of the effects of the following drugs administered previously to the acquisition of the CFC: pentylenetetrazole (anxiogenic) and chlordiazepoxide (anxiolytic); methylphenidate and amphetamine (used for ADHD); lamotrigine, carbamazepine, and valproic acid (mood stabilizers); haloperidol, ziprasidone, risperidone, amisulpride, and clozapine (neuroleptic drugs); metoclopramide and SCH 23390 (dopamine antagonists without antipsychotic properties); and ketamine (a psychotomimmetic). The effects of paradoxical sleep deprivation (that worsens psychotic symptoms) and the performance in a latent inhibition protocol (an animal model of schizophrenia) were also verified. No differences in the sensitivity to the shock were observed. The repeated exposure to the CFC task did not modify the deficit in CFC presented by SHR. Considering pharmacological treatments, only the neuroleptic drugs reversed this deficit. This deficit was potentiated by proschizophrenia manipulations. Finally, a deficit in latent inhibition was also presented by SHR. These findings suggest that the deficit in CFC presented by SHR could be a useful animal model to study abnormalities in emotional context processing related to schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacology , Disease Models, Animal , Emotions , Memory , Schizophrenia/diagnosis , Schizophrenic Psychology , Amphetamine/pharmacology , Animals , Behavior, Animal/drug effects , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Dopamine Antagonists/pharmacology , Electroshock , Emotions/drug effects , Fear/drug effects , Fear/physiology , Freezing Reaction, Cataleptic/drug effects , Inhibition, Psychological , Male , Memory/drug effects , Pain Threshold/drug effects , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Wistar , Schizophrenia/drug therapy , Sleep Deprivation , Vocalization, Animal/drug effects
19.
Neurobiol Learn Mem ; 90(4): 624-32, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18707010

ABSTRACT

The aim of the present study was to investigate the effects of paradoxical sleep deprivation (PSD) for 96 h on the learning/memory processes in rats submitted to the plus-maze discriminative avoidance task (PM-DAT), which simultaneously evaluates learning, memory, anxiety and motor function. Four experiments were performed in which rats were submitted to: (1) post-training and pre-test PSD; (2) post-training or pre-test PSD; (3) pre-training PSD or pre-training paradoxical sleep (PS) rebound (24 h) and (4) pre-test PSD rebound. Concerning Experiment I, post-training and pre-test PSD induced memory deficits, an anxiolytic-like behavior and an increase in locomotor activity. In Experiment II, both post-training PS-deprived and pre-test PS-deprived groups showed memory deficits per se. However, only the pre-test PS-deprived animals presented anxiolytic-like behavior and increased locomotor activity. In Experiment III, pre-training PS-deprived rats showed learning and memory deficits, anxiolytic-like behavior and increased locomotor activity. A 24h-sleep recovery period after the PSD abolished the learning and memory deficits but not anxiety and locomotor alterations. Finally, sleep rebound did not modify acquisition (Experiment III) and retrieval (Experiment IV). This study strengthened the critical role of paradoxical sleep (but not sleep rebound) in all the phases of learning and memory formation. In addition, it suggests that PSD effects on acquisition and consolidation do not seem to be related to other behavioral alterations induced by this procedure.


Subject(s)
Avoidance Learning/physiology , Discrimination Learning/physiology , Maze Learning/physiology , Memory Disorders/physiopathology , Memory/physiology , Sleep Deprivation/physiopathology , Sleep, REM/physiology , Animals , Male , Rats , Rats, Wistar
20.
Prog Neuropsychopharmacol Biol Psychiatry ; 32(5): 1277-82, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18499322

ABSTRACT

We have recently demonstrated that paradoxical sleep deprivation (PSD) potentiates the induction of amphetamine (AMPH)-induced behavioural sensitization by increasing its conditioned component. In the present study, the effects of sleep rebound (induced by 24 h recovery period from PSD) were studied on AMPH-induced behavioural sensitization. Sleep rebound attenuated the acute locomotor-stimulating effect of AMPH. AMPH-induced behavioural sensitization was context-specific and was also attenuated by sleep rebound. These results strengthen the notion that sleep conditions can influence AMPH-induced behavioural sensitization.


Subject(s)
Amphetamine/pharmacology , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Conditioning, Psychological/drug effects , Sleep, REM/drug effects , Analysis of Variance , Animals , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Sleep, REM/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...