Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 274: 120145, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37121374

ABSTRACT

Therapeutic options to restore responsiveness in patients with prolonged disorder of consciousness (PDOC) are limited. We have recently shown that a single session of tDCS over M1 delivered at rest can reduce thalamic self-inhibition during motor command following. Here, we build upon this by exploring whether pairing tDCS with a concurrent passive mobilisation protocol can further influence thalamo-M1 dynamics and whether these changes are enhanced after multiple stimulation sessions. Specifically, we used Dynamic Causal Modelling (DCM) of functional magnetic resonance imaging (fMRI) data from 22 healthy participants to assess changes in effective connectivity within the motor network during active thumb movements after 1 or 5 sessions of tDCS paired with passive mobilisations of the thumb. We found that a single anodal tDCS session decreased self-inhibition in M1, with five sessions further enhancing this effect. In addition, anodal tDCS increased thalamo-M1 excitation as compared to cathodal stimulation, with the effects maintained after 5 sessions. Together, our results suggest that pairing anodal tDCS with passive mobilisation across multiple sessions may facilitate thalamo-cortical dynamics that are relevant for behavioural responsiveness in PDOC. More broadly, they offer a mechanistic window into the neural underpinnings of the cumulative effects of multi-session tDCS.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Thumb , Motor Cortex/physiology , Brain/physiology , Transcranial Magnetic Stimulation , Evoked Potentials, Motor/physiology
2.
Neuroimage ; 269: 119915, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36736717

ABSTRACT

The exact mechanisms behind the effects of transcranial direct current stimulation (tDCS) at a network level are still poorly understood, with most studies to date focusing on local (cortical) effects and changes in motor-evoked potentials or BOLD signal. Here, we explored stationary and dynamic effective connectivity across the motor network at rest in two experiments where we applied tDCS over the primary motor cortex (M1-tDCS) or the cerebellum (cb-tDCS) respectively. Two cohorts of healthy volunteers (n = 21 and n = 22) received anodal, cathodal, and sham tDCS sessions (counterbalanced) during 20 min of resting-state functional magnetic resonance imaging (fMRI). We used spectral Dynamic Causal Modelling (DCM) and hierarchical Parametrical Empirical Bayes (PEB) to analyze data after (compared to a pre-tDCS baseline) and during stimulation. We also implemented a novel dynamic (sliding windows) DCM/PEB approach to model the nature of network reorganisation across time. In both experiments we found widespread effects of tDCS that extended beyond the targeted area and modulated effective connectivity between cortex, thalamus, and cerebellum. These changes were characterised by unique nonlinear temporal fingerprints across connections and polarities. Our results support growing research challenging the classic notion of anodal and cathodal tDCS as excitatory and inhibitory respectively, as well as the idea of a cumulative effect of tDCS over time. Instead, they described a rich set of changes with specific spatial and temporal patterns. Our work provides a starting point for advancing our understanding of network-level tDCS effects and may guide future work to optimise its cognitive and clinical applications.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Motor Cortex/physiology , Bayes Theorem , Magnetic Resonance Imaging , Cerebellum , Evoked Potentials, Motor/physiology
3.
Neurosci Conscious ; 2022(1): niac016, 2022.
Article in English | MEDLINE | ID: mdl-36415846

ABSTRACT

Despite our constant need to flexibly balance internal and external information, research on cognitive flexibility has focused solely on shifts between externally oriented tasks. In contrast, switches across internally oriented processes (and self-referential cognition specifically) and between internal and external domains have never been investigated. Here, we report a novel task-switching paradigm developed to explore the behavioural signatures associated with cognitive flexibility when self-referential processes, as well as more traditional external processes, are involved. Two hundred healthy volunteers completed an online task. In each trial, participants performed one of four possible tasks on written words, as instructed by a pre-stimulus cue. These included two externally and two internally oriented tasks: assessing whether the third letter was a consonant or the penultimate letter was a vowel versus assessing whether the adjective applied to their personality or if it described a bodily sensation they were currently experiencing. In total, 40% of trials involved switches to another task, and these were equally distributed across within-external, within-internal, internal-to-external and external-to-internal switches. We found higher response times for switches compared to repetitions both in the external and internal domains, thus demonstrating the presence of switch costs in self-referential tasks for the first time. We also found higher response times for between-domain switches compared to switches within each domain. We propose that these effects originate from the goal-directed engagement of different domain-specific cognitive systems that flexibly communicate and share domain-general control features.

4.
Sci Rep ; 9(1): 11482, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391537

ABSTRACT

The notion of semantic embodiment posits that concepts are represented in the same neural sensorimotor systems that were involved in their acquisition. However, evidence in support of embodied semantics - in particular the hypothesised contribution of motor and premotor cortex to the representation of action concepts - is varied. Here, we tested the hypothesis that, consistent with semantic embodiment, sensorimotor cortices will rapidly become active while healthy participants access the meaning of visually-presented motor and non-motor action verbs. Event-related potentials revealed early differential processing of motor and non-motor verbs (164-203 ms) within distinct regions of cortex likely reflecting rapid cortical activation of differentially distributed semantic representations. However, we found no evidence for a specific role of sensorimotor cortices in supporting these representations. Moreover, we observed a later modulation of the alpha band (8-12 Hz) from 555-785 ms over central electrodes, with estimated generators within the left superior parietal lobule, which may reflect post-lexical activation of the object-directed features of the motor action concepts. In conclusion, we find no evidence for a specific role of sensorimotor cortices when healthy participants judge the meaning of visually-presented action verbs. However, the relative contribution of sensorimotor cortices to action comprehension may vary as a function of task goals.


Subject(s)
Alpha Rhythm/physiology , Comprehension/physiology , Motor Cortex/physiology , Parietal Lobe/physiology , Semantics , Adolescent , Adult , Brain Mapping , Evoked Potentials/physiology , Healthy Volunteers , Humans , Motor Cortex/diagnostic imaging , Parietal Lobe/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...