Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37375777

ABSTRACT

Root tubers of Asphodelus bento-rainhae subsp. bento-rainhae (AbR), a vulnerable endemic species, and Asphodelus macrocarpus subsp. macrocarpus (AmR) have traditionally been used in Portugal to treat inflammatory and infectious skin disorders. The present study aims to evaluate the in vitro antimicrobial activity of crude 70% and 96% hydroethanolic extracts of both medicinal plants, specifically against multidrug-resistant skin-related pathogens, to identify the involved marker secondary metabolites and also to assess the pre-clinical toxicity of these medicinal plant extracts. Bioguided fractionation of the 70% hydroethanolic extracts of both species using solvents of increasing polarity, namely diethyl ether (DEE: AbR-1, AmR-1), ethyl acetate (AbR-2, AmR-2) and aqueous (AbR-3, AmR-3) fractions, enabled the identification of the DEE fractions as the most active against all the tested Gram-positive microorganisms (MIC: 16 to 1000 µg/mL). Furthermore, phytochemical analyses using TLC and LC-UV/DAD-ESI/MS techniques revealed the presence of anthracene derivatives as the main constituents of DEE fractions, and five known compounds, namely 7'-(chrysophanol-4-yl)-chrysophanol-10'-C-beta-D-xylopyranosyl-anthrone (p), 10,7'-bichrysophanol (q), chrysophanol (r), 10-(chrysophanol-7'-yl)-10-hydroxychrysophanol-9-anthrone (s) and asphodelin (t), were identified as the main marker compounds. All these compounds showed high antimicrobial activity, particularly against Staphylococcus epidermidis (MIC: 3.2 to 100 µg/mL). Importantly, no cytotoxicity against HepG2 and HaCaT cells (up to 125 µg/mL) for crude extracts of both species and genotoxicity (up to 5000 µg/mL, with and without metabolic activation) for AbR 96% hydroethanolic extract was detected using the MTT and Ames tests, respectively. Overall, the obtained results contribute to the concrete validation of the use of these medicinal plants as potential sources of antimicrobial agents in the treatment of skin diseases.

2.
Front Endocrinol (Lausanne) ; 13: 1043543, 2022.
Article in English | MEDLINE | ID: mdl-36714559

ABSTRACT

Introduction: The development of reliable hepatic in vitro models may provide insights into disease mechanisms, linking hepatocyte dysmetabolism and related pathologies. However, several of the existing models depend on using high concentrations of hepatocyte differentiation-promoting compounds, namely glucose, insulin, and dexamethasone, which is among the reasons that have hampered their use for modeling metabolism-related diseases. This work focused on modulating glucose homeostasis and glucocorticoid concentration to improve the suitability of a mesenchymal stem-cell (MSC)-derived hepatocyte-like cell (HLC) human model for studying hepatic insulin action and disease modeling. Methods: We have investigated the role of insulin, glucose and dexamethasone on mitochondrial function, insulin signaling and carbohydrate metabolism, namely AKT phosphorylation, glycogen storage ability, glycolysis and gluconeogenesis, as well as fatty acid oxidation and bile acid metabolism gene expression in HLCs. In addition, we evaluated cell morphological features, albumin and urea production, the presence of hepatic-specific markers, biotransformation ability and mitochondrial function. Results: Using glucose, insulin and dexamethasone levels close to physiological concentrations improved insulin responsiveness in HLCs, as demonstrated by AKT phosphorylation, upregulation of glycolysis and downregulation of Irs2 and gluconeogenesis and fatty acid oxidation pathways. Ammonia detoxification, EROD and UGT activities and sensitivity to paracetamol cytotoxicity were also enhanced under more physiologically relevant conditions. Conclusion: HLCs kept under reduced concentrations of glucose, insulin and dexamethasone presented an improved hepatic phenotype and insulin sensitivity demonstrating superior potential as an in vitro platform for modeling energy metabolism-related disorders, namely for the investigation of the insulin signaling pathway.


Subject(s)
Glucocorticoids , Mesenchymal Stem Cells , Humans , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Glucose/metabolism , Mesenchymal Stem Cells/metabolism , Signal Transduction , Dexamethasone/pharmacology , Energy Metabolism , Homeostasis , Fatty Acids/metabolism
3.
Arch Biochem Biophys ; 691: 108481, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32735865

ABSTRACT

Aquaporins (AQPs) facilitate water and glycerol movement across membranes. AQP7 is the main aquaglyceroporin in pancreatic ß-cells and was proposed to play a role in insulin exocytosis. Although AQP7-null mice display adult-onset obesity, impaired insulin secretion and insulin resistance, AQP7 loss-of-function homozygous mutations in humans do not correlate with obesity nor type-2 diabetes. In addition, AQP12 is upregulated in pancreatitis. However, the implication of this isoform in endocrine pancreas inflammation is still unclear. Here, we investigated AQP7 and AQP12 involvement in cellular and inflammatory processes using RIN-m5F beta cells, a model widely used for their high insulin secretion. AQP7 and AQP12 expression were directly associated with cell proliferation, adhesion and migration. While tumor necrosis factor-alpha (TNFα)-induced inflammation impaired AQP7 expression and drastically reduced insulin secretion, lipopolysaccharides (LPS) prompted AQP7 upregulation, and both TNFα and LPS upregulated AQP12. Importantly, cells overexpressing AQP12 are more resistant to inflammation, revealing lower levels of proinflammatory markers. Altogether, these data document AQP7 involvement in insulin secretion and AQP12 implication in inflammation, highlighting their fundamental role in pancreatic ß-cell function.


Subject(s)
Aquaporins/metabolism , Inflammation/metabolism , Insulin-Secreting Cells/metabolism , Phenotype , Animals , Cell Adhesion/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Down-Regulation/drug effects , Glycerol/metabolism , Inflammation/chemically induced , Lipopolysaccharides , Rats , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...