Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Med Chem Res ; : 1-7, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37362320

ABSTRACT

Adaptor protein 2-associated kinase 1 (AAK1) is a member of the Ark1/Prk1 family of serine/threonine kinases and plays a role in modulating receptor endocytosis. AAK1 was identified as a potential therapeutic target for the treatment of neuropathic pain when it was shown that AAK1 knock out (KO) mice had a normal response to the acute pain phase of the mouse formalin model, but a reduced response to the persistent pain phase. Herein we report our early work investigating a series of pyrrolo[2,1-f][1,2,4]triazines as part of our efforts to recapitulate this KO phenotype with a potent, small molecule inhibitor of AAK1. The synthesis, structure-activity relationships (SAR), and in vivo evaluation of these AAK1 inhibitors is described.

2.
J Med Chem ; 65(5): 4121-4155, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35171586

ABSTRACT

Adaptor protein 2-associated kinase 1 (AAK1) is a serine/threonine kinase that was identified as a therapeutic target for the potential treatment of neuropathic pain. Inhibition of AAK1 in the central nervous system, particularly within the spinal cord, was found to be the relevant site for achieving an antinociceptive effect. We previously reported that compound 7 is a brain-penetrant, AAK1 inhibitor that showed efficacy in animal models for neuropathic pain. One approach we took to improve upon the potency of 7 involved tying the amide back into the neighboring phenyl ring to form a bicyclic heterocycle. Investigation of the structure-activity relationships (SARs) of substituents on the resultant quinazoline and quinoline ring systems led to the identification of (S)-31, a brain-penetrant, AAK1-selective inhibitor with improved enzyme and cellular potency compared to 7. The synthesis, SAR, and in vivo evaluation of a series of quinazoline and quinoline-based AAK1 inhibitors are described herein.


Subject(s)
Neuralgia , Quinolines , Amides/pharmacology , Amides/therapeutic use , Animals , Neuralgia/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Quinazolines/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Structure-Activity Relationship
3.
J Med Chem ; 64(15): 11090-11128, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34270254

ABSTRACT

Effective treatment of chronic pain, in particular neuropathic pain, without the side effects that often accompany currently available treatment options is an area of significant unmet medical need. A phenotypic screen of mouse gene knockouts led to the discovery that adaptor protein 2-associated kinase 1 (AAK1) is a potential therapeutic target for neuropathic pain. The synthesis and optimization of structure-activity relationships of a series of aryl amide-based AAK1 inhibitors led to the identification of 59, a brain penetrant, AAK1-selective inhibitor that proved to be a valuable tool compound. Compound 59 was evaluated in mice for the inhibition of µ2 phosphorylation. Studies conducted with 59 in pain models demonstrated that this compound was efficacious in the phase II formalin model for persistent pain and the chronic-constriction-injury-induced model for neuropathic pain in rats. These results suggest that AAK1 inhibition is a promising approach for the treatment of neuropathic pain.


Subject(s)
Amides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Brain/enzymology , Neuralgia/drug therapy , Protein Kinases/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Caco-2 Cells , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Neuralgia/metabolism , Protein Kinases/chemical synthesis , Protein Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 30(22): 127531, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32890685

ABSTRACT

Previous studies have identified a series of imidazo[1,2-a]pyridine (IZP) derivatives as potent allosteric inhibitors of HIV-1 integrase (ALLINIs) and virus infection in cell culture. However, IZPs were also found to be relatively potent activators of the pregnane-X receptor (PXR), raising the specter of induction of CYP-mediated drug disposition pathways. In an attempt to modify PXR activity without affecting anti-HIV-1 activity, rational structure-based design and modeling approaches were used. An X-ray cocrystal structure of (S,S)-1 in the PXR ligand binding domain (LBD) allowed an examination of the potential of rational structural modifications designed to abrogate PXR. The introduction of bulky basic amines at the C-8 position provided macrocyclic IZP derivatives that displayed potent HIV-1 inhibitory activity in cell culture with no detectable PXR transactivation at the highest concentration tested.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Macrocyclic Compounds/pharmacology , Pregnane X Receptor/antagonists & inhibitors , Allosteric Regulation/drug effects , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/chemistry , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Microbial Sensitivity Tests , Molecular Structure , Pregnane X Receptor/metabolism , Structure-Activity Relationship , Virus Replication/drug effects
5.
ACS Med Chem Lett ; 9(12): 1170-1174, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613321

ABSTRACT

BMS-823778 (2), a 1,2,4-triazolopyridinyl-methanol derived analog, was identified as a potent and selective inhibitor of human 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD-1) enzyme (IC50 = 2.3 nM) with >10,000-fold selectivity over 11ß-HSD-2. Compound 2 exhibits robust acute pharmacodynamic effects in cynomolgus monkeys (ED50 = 0.6 mg/kg) and in diet-induced obese (DIO) mice (ED50 = 34 mg/kg). Compound 2 also showed excellent inhibition in an ex vivo adipose DIO mouse model (ED50 = 5.2 mg/kg). Oral bioavailability ranges from 44% to 100% in preclinical species. Its favorable development properties, pharmacokinetics, high adipose-to-plasma concentration ratio, and preclinical pharmacology profile have prompted the evaluation of 2 for the treatment of type 2 diabetes and metabolic syndrome in phase 2 clinical trials.

6.
J Med Chem ; 60(12): 4932-4948, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28537398

ABSTRACT

BMS-816336 (6n-2), a hydroxy-substituted adamantyl acetamide, has been identified as a novel, potent inhibitor against human 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) enzyme (IC50 3.0 nM) with >10000-fold selectivity over human 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2). 6n-2 exhibits a robust acute pharmacodynamic effect in cynomolgus monkeys (ED50 0.12 mg/kg) and in DIO mice. It is orally bioavailable (%F ranges from 20 to 72% in preclinical species) and has a predicted pharmacokinetic profile of a high peak to trough ratio and short half-life in humans. This ADME profile met our selection criteria for once daily administration, targeting robust inhibition of 11ß-HSD1 enzyme for the first 12 h period after dosing followed by an "inhibition holiday" so that the potential for hypothalamic-pituitary-adrenal (HPA) axis activation might be mitigated. 6n-2 was found to be well-tolerated in phase 1 clinical studies and represents a potential new treatment for type 2 diabetes, metabolic syndrome, and other human diseases modulated by glucocorticoid control.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Adamantane/analogs & derivatives , Azetidines/pharmacology , Enzyme Inhibitors/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Actins/antagonists & inhibitors , Adamantane/administration & dosage , Adamantane/chemistry , Adamantane/pharmacology , Administration, Oral , Animals , Azetidines/administration & dosage , Azetidines/chemistry , Biological Availability , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Female , Half-Life , Humans , Hypothalamo-Hypophyseal System/drug effects , Inhibitory Concentration 50 , Macaca fascicularis , Male , Mice, Obese , Rats , Structure-Activity Relationship
7.
J Mol Biol ; 427(4): 924-942, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25579995

ABSTRACT

The human pregnane X receptor (PXR) is a promiscuous nuclear receptor that functions as a sensor to a wide variety of xenobiotics and regulates expression of several drug metabolizing enzymes and transporters. We have generated "Adnectins", derived from 10th fibronectin type III domain ((10)Fn3), that target the PXR ligand binding domain (LBD) interactions with the steroid receptor co-activator-1 (SRC-1) peptide, displacing SRC-1 binding. Adnectins are structurally homologous to the immunoglobulin superfamily. Three different co-crystal structures of PXR LBD with Adnectin-1 and CCR1 (CC chemokine receptor-1) antagonist Compound-1 were determined. This structural information was used to modulate PXR affinity for a related CCR1 antagonist compound that entered into clinical trials for rheumatoid arthritis. The structures of PXR with Adnectin-1 reveal specificity of Adnectin-1 in not only targeting the interface of the SRC-1 interactions but also engaging the same set of residues that are involved in binding of SRC-1 to PXR. Substituting SRC-1 with Adnectin-1 does not alter the binding conformation of Compound-1 in the ligand binding pocket. The structure also reveals the possibility of using Adnectins as crystallization chaperones to generate structures of PXR with compounds of interest.


Subject(s)
Nuclear Receptor Coactivator 1/chemistry , Receptors, CCR1/antagonists & inhibitors , Receptors, Steroid/chemistry , Urea/analogs & derivatives , Valine/analogs & derivatives , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Lignans/metabolism , Models, Molecular , Molecular Sequence Data , Pregnane X Receptor , Protein Binding , Protein Structure, Tertiary , Receptors, CCR1/metabolism , Sequence Alignment , Surface Plasmon Resonance , Urea/chemistry , Urea/metabolism , Urea/pharmacology , Valine/chemistry , Valine/metabolism , Valine/pharmacology
8.
J Med Chem ; 57(18): 7550-64, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25101488
9.
ACS Med Chem Lett ; 5(7): 803-8, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050169

ABSTRACT

Small alkyl groups and spirocyclic-aromatic rings directly attached to the left side and right side of the 1,2,4-triazolopyridines (TZP), respectively, were found to be potent and selective inhibitors of human 11ß-hydroxysteroid dehydrogenase-type 1 (11ß-HSD-1) enzyme. 3-(1-(4-Chlorophenyl)cyclopropyl)-8-cyclopropyl-[1,2,4]triazolo[4,3-a]pyridine (9f) was identified as a potent inhibitor of the 11ß-HSD-1 enzyme with reduced Pregnane-X receptor (PXR) transactivation activity. The binding orientation of this TZP series was revealed by X-ray crystallography structure studies.

10.
J Med Chem ; 57(5): 1855-79, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24397558

ABSTRACT

Described herein are structure-activity relationship studies that resulted in the optimization of the activity of members of a class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors. Subsequent iterations of analogue design and syntheses successfully addressed off-target activities, most notably human pregnane X receptor (hPXR) transactivation, and led to significant improvements in the physicochemical properties of lead compounds. Those analogues exhibiting improved solubility and membrane permeability were shown to have notably enhanced pharmacokinetic profiles. Additionally, a series of alkyl bridged piperazine carboxamides was identified as being of particular interest, and from which the compound BMS-791325 (2) was found to have distinguishing antiviral, safety, and pharmacokinetic properties that resulted in its selection for clinical evaluation.


Subject(s)
Antiviral Agents/pharmacology , Benzazepines/pharmacology , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Benzazepines/chemistry , Benzazepines/pharmacokinetics , Dogs , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular , Rats , Structure-Activity Relationship
11.
J Med Chem ; 55(21): 9208-23, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-23030502

ABSTRACT

This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aß levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aß levels were not obtained.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Guanidines/chemical synthesis , Small Molecule Libraries , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/chemistry , Brain/metabolism , Cell Line , Crystallography, X-Ray , Guanidines/pharmacokinetics , Guanidines/pharmacology , Humans , Isoxazoles/chemical synthesis , Isoxazoles/pharmacokinetics , Isoxazoles/pharmacology , Models, Molecular , Molecular Structure , Mutation , Peptide Fragments/metabolism , Protein Binding , Radioligand Assay , Rats , Solid-Phase Synthesis Techniques , Solutions , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 21(22): 6909-15, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21974952
13.
Bioorg Med Chem Lett ; 21(22): 6693-8, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21983444

ABSTRACT

Derived from the HTS hit 1, a series of hydroxyisoquinolines was discovered as potent and selective 11ß-HSD1 inhibitors with good cross species activity. Optimization of substituents at the 1 and 4 positions of the isoquinoline group in addition to the core modifications, with a special focus on enhancing metabolic stability and aqueous solubility, resulted in the identification of several compounds as potent advanced leads.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Isoquinolines/chemistry , Isoquinolines/pharmacology , Animals , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/pharmacokinetics , Humans , Isoquinolines/pharmacokinetics , Mice , Mice, Inbred BALB C , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 21(22): 6916-24, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21782431

ABSTRACT

The synthesis, evaluation, and structure-activity relationships of a class of γ-lactam 1,3-diaminopropan-2-ol transition-state isostere inhibitors of BACE are discussed. Two strategies for optimizing lead compound 1a are presented. Reducing the overall size of the inhibitors resulted in the identification of γ-lactam 1i, whereas the introduction of conformational constraint on the prime-side of the inhibitor generated compounds such as the 3-hydroxypyrrolidine inhibitor 28n. The full in vivo profile of 1i in rats and 28n in Tg 2576 mice is presented.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lactams/chemistry , Lactams/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Animals , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Lactams/chemical synthesis , Lactams/pharmacokinetics , Mice , Models, Molecular , Rats , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 21(10): 2925-9, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21486696

ABSTRACT

Herein, we present initial SAR studies on a series of bridged 2-arylindole-based NS5B inhibitors. The introduction of bridging elements between the indole N1 and the ortho-position of the 2-aryl moiety resulted in conformationally constrained heterocycles that possess multiple additional vectors for further exploration. The binding mode and pharmacokinetic (PK) properties of select examples, including: 13-cyclohexyl-6-oxo-6,7-dihydro-5H-indolo[2,1-d][1,4]benzodiazepine-10-carboxylic acid (7) (IC(50)=0.07 µM, %F=18), are reported.


Subject(s)
Enzyme Activation/drug effects , Hepacivirus/enzymology , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/pharmacology , Indoles/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Drug Design , Heterocyclic Compounds/chemistry , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 21(1): 537-41, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21078556

ABSTRACT

Heterocyclic replacement of the isophthalamide phenyl ring in hydroxyethylamine (HEA) BACE-1 inhibitors was explored. A variety of indole-1,3-dicarboxamide HEAs exhibited potent BACE-1 enzyme inhibition, but displayed poor cellular activity. Improvements in cellular activity and aspartic protease selectivity were observed for 7-azaindole-1,3-dicarboxamide HEAs. A methylprolinol-bearing derivative (10n) demonstrated robust reductions in rat plasma Aß levels, but did not lower rat brain Aß due to poor central exposure. The same analog exhibited a high efflux ratio in a bidirectional Caco-2 assay and was likely a substrate of the efflux transporter P-glycoprotein. X-ray crystal structures are reported for two indole HEAs in complex with BACE-1.


Subject(s)
Amines/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Indoles/chemical synthesis , Protease Inhibitors/chemistry , Pyridines/chemical synthesis , Amines/chemical synthesis , Amines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/blood , Animals , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Crystallography, X-Ray , Indoles/chemistry , Indoles/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , Pyridines/chemistry , Pyridines/pharmacology , Rats , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 18(11): 3168-72, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18485702

ABSTRACT

Several series of pyridine amides were identified as selective and potent 11beta-HSD1 inhibitors. The most potent inhibitors feature 2,6- or 3,5-disubstitution on the pyridine core. Various linkers (CH(2)SO(2), CH(2)S, CH(2)O, S, O, N, bond) between the distal aryl and central pyridyl groups are tolerated, and lipophilic amide groups are generally favored. On the distal aryl group, a number of substitutions are well tolerated. A crystal structure was obtained for a complex between 11beta-HSD1 and the most potent inhibitor in this series.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Amides/chemical synthesis , Amides/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Amides/chemistry , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Molecular Conformation , Molecular Structure , Pyridines/chemistry , Structure-Activity Relationship
18.
Arch Biochem Biophys ; 410(2): 307-16, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12573291

ABSTRACT

Amyloid precursor protein (APP) cleaving enzyme (BACE) is the enzyme responsible for beta-site cleavage of APP, leading to the formation of the amyloid-beta peptide that is thought to be pathogenic in Alzheimer's disease (AD). Hence, BACE is an attractive pharmacological target, and numerous research groups have begun searching for potent and selective inhibitors of this enzyme as a potential mechanism for therapeutic intervention in AD. The mature enzyme is composed of a globular catalytic domain that is N-linked glycosylated in mammalian cells, a single transmembrane helix that anchors the enzyme to an intracellular membrane, and a short C-terminal domain that extends outside the phospholipid bilayer of the membrane. Here we have compared the substrate and active site-directed inhibitor binding properties of several recombinant constructs of human BACE. The constructs studied here address the importance of catalytic domain glycosylation state, inclusion of domains other than the catalytic domain, and incorporation into a membrane bilayer on the interactions of the enzyme active site with peptidic ligands. We find no significant differences in ligand binding properties among these various constructs. These data demonstrate that the nonglycosylated, soluble catalytic domain of BACE faithfully reflects the ligand binding properties of the full-length mature enzyme in its natural membrane environment. Thus, the use of the nonglycosylated, soluble catalytic domain of BACE is appropriate for studies aimed at understanding the determinants of ligand recognition by the enzyme active site.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Recombinant Proteins/chemistry , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases , Animals , Aspartic Acid Endopeptidases/metabolism , Binding Sites , CHO Cells , Catalysis , Catalytic Domain , Cell Line , Cell Membrane/metabolism , Chromatography, High Pressure Liquid , Cricetinae , Dose-Response Relationship, Drug , Drosophila , Endopeptidases , Escherichia coli/metabolism , Glycosylation , Humans , Inhibitory Concentration 50 , Kinetics , Ligands , Light , Lipid Bilayers/metabolism , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Scattering, Radiation , Time Factors
19.
Chem Biol ; 9(1): 79-92, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11841941

ABSTRACT

NMR spectroscopy was used to characterize the hepatitis C virus (HCV) NS3 protease in a complex with the 24 residue peptide cofactor from NS4A and a boronic acid inhibitor, Ac-Asp-Glu-Val-Val-Pro-boroAlg-OH. Secondary-structure information, NOE constraints between protease and cofactor, and hydrogen-deuterium exchange rates revealed that the cofactor was an integral strand in the N-terminal beta-sheet of the complex as observed in X-ray crystal structures. Based upon chemical-shift perturbations, inhibitor-protein NOEs, and the protonation state of the catalytic histidine, the boronic acid inhibitor was bound in the substrate binding site as a transition state mimic. In the absence of cofactor, the inhibitor had a lower affinity for the protease. Although the inhibitor binds in the same location, differences were observed at the catalytic site of the protease.


Subject(s)
Boronic Acids/chemistry , Carrier Proteins/chemistry , Hepacivirus/enzymology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/chemistry , Binding Sites , Boronic Acids/pharmacology , Crystallography, X-Ray , Humans , Intracellular Signaling Peptides and Proteins , Magnetic Resonance Spectroscopy , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...