Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 11(7): 2405-2416, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35687717

ABSTRACT

Signal peptides are critical for the efficient expression and routing of extracellular and secreted proteins. Most protein production and screening technologies rely upon a relatively small set of signal peptides. Despite their central role in biotechnology, there are limited studies comprehensively examining the interplay between signal peptides and expressed protein sequences. Here, we describe a high-throughput method to screen novel signal peptides that maintain a high degree of surface expression across a range of protein scaffolds with highly variable N-termini. We find that the canonical signal peptide used in yeast surface display, derived from Aga2p, fails to achieve high surface expression for 42.5% of constructs containing diverse N-termini. To circumvent this, we have identified two novel signal peptides derived from endogenous yeast proteins, SRL1 and KISH, which are highly tolerant to diverse N-terminal sequences. This pipeline can be used to expand our understanding of signal peptide function, identify improved signal peptides for protein expression, and refine the computational tools used for signal peptide prediction.


Subject(s)
Protein Sorting Signals , Proteomics , Saccharomyces cerevisiae , Amino Acid Sequence , Bias , Peptide Library , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33941689

ABSTRACT

Drug delivery mitigates toxic side effects and poor pharmacokinetics of life-saving therapeutics and enhances treatment efficacy. However, direct cytoplasmic delivery of drugs and vaccines into cells has remained out of reach. We find that liposomes studded with 0.8-nm-wide carbon nanotube porins (CNTPs) function as efficient vehicles for direct cytoplasmic drug delivery by facilitating fusion of lipid membranes and complete mixing of the membrane material and vesicle interior content. Fusion kinetics data and coarse-grained molecular dynamics simulations reveal an unusual mechanism where CNTP dimers tether the vesicles, pull the membranes into proximity, and then fuse their outer and inner leaflets. Liposomes containing CNTPs in their membranes and loaded with an anticancer drug, doxorubicin, were effective in delivering the drug to cancer cells, killing up to 90% of them. Our results open an avenue for designing efficient drug delivery carriers compatible with a wide range of therapeutics.


Subject(s)
Drug Delivery Systems/methods , Membrane Fusion , Nanotubes, Carbon/chemistry , Porins , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacology , Lipid Bilayers , Liposomes/chemistry , Liposomes/pharmacology , Mice , Molecular Dynamics Simulation , Polymers , Porins/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...