Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Curr Microbiol ; 79(12): 398, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36352269

ABSTRACT

A bacterium strain isolated from freshwater sediment of San Pablo river of Santiago de Cuba, Cuba was identified as a Bacillus sp. by Matrix-Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry. A 16S rRNA gene analysis showed that the isolate A3 belongs to the operational group Bacillus amyloliquefaciens, while the phylogenetic analysis of the gyrA gene sequence grouped it within B. amyloliquefaciens subsp. plantarum cluster, referred now as Bacillus velezensis. In vitro antibacterial studies demonstrated the capacity of the isolate A3 to produce bioactive metabolites against Bacillus subtilis ATCC 11,778, Bacillus cereus ATCC 6633, and Staphylococcus aureus ATCC 25,923 by cross-streak, overlay, and microdilution methods. The strain also showed a high potential against the multidrug-resistant Staphylococcus aureus ATCC 700,699, ATCC 29,213, and ATCC 6538. At pH 8 and 96 h in the medium 2 of A3 culture conditions, the produced metabolites with antibacterial potential were enhanced. Some alterations in the morphology of the phytopathogens Aspergillus niger ATCC 9642, Alternaria alternata CECT 2662, and Fusarium solani CCEBI 3094 were induced by the cell-free supernatant of B. velezensis A3. A preliminary study of the nature of the bioactive compounds produced by the strain A3 showed the presence of both lipids and peptides in the culture. Those results highlight B. velezensis A3 as a promissory bacterium capable to produce bioactive metabolites with antibacterial and antifungal properties against pathogens.


Subject(s)
Bacillus , Methicillin-Resistant Staphylococcus aureus , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Phylogeny , Bacillus/genetics , Bacillus/metabolism , Fungi/genetics , Bacillus subtilis/metabolism , Anti-Bacterial Agents/chemistry , Fresh Water
2.
Int Microbiol ; 14(1): 41-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-22015701

ABSTRACT

Ethanol and endopolygalacturonase (endoPG) are simultaneously produced by the yeast Kluyveromyces marxianus CCEBI 2011. The aim of this study was to determine the optimal combination of seven environmental and nutritional variables, as well as the influence of each one, with respect to the fermentation process in yeast cultures in which sugarcane juice was the substrate. Simplex sequential optimization showed that after 15 runs the optimal conditions were: pH, 4.6; temperature, 31 ºC; total reducing sugars (TRS), 125 g/l; (NH(4))(2)SO(4), 2.48 g/l; (NH(4))(2)HPO(4), 2.73 g/l; CaCl(2), 0.33 g/l and MgSO(4)·7H(2)O, 0.54 g/l. Under these conditions, the ethanol concentration was 47.6 g/l and endoPG concentration was 9.8 U/ml, which represented increases of 22% and 10%, respectively, over the concentrations obtained under suboptimal conditions. Temperature and (NH(4))(2)SO(4) supplementation were the most significant factors influencing the co-production process.


Subject(s)
Ethanol/metabolism , Kluyveromyces/metabolism , Polygalacturonase/metabolism , Saccharum/metabolism , Culture Media/chemistry , Fermentation , Hydrogen-Ion Concentration , Temperature
3.
Int. microbiol ; 14(1): 41-49, mar. 2011. ilus, tab
Article in English | IBECS | ID: ibc-94605

ABSTRACT

Ethanol and endopolygalacturonase (endoPG) are simultaneously produced by the yeast Kluyveromyces marxianus CCEBI 2011. The aim of this study was to determine the optimal combination of seven environmental and nutritional variables, as well as the influence of each one, with respect to the fermentation process in yeast cultures in which sugarcane juice was the substrate. Simplex sequential optimization showed that after 15 runs the optimal conditions were: pH, 4.6; temperature, 31 ºC; total reducing sugars (TRS), 125 g/l; (NH(4))(2)SO(4), 2.48 g/l; (NH(4))(2)HPO(4), 2.73 g/l; CaCl(2), 0.33 g/l and MgSO(4)·7H(2)O, 0.54 g/l. Under these conditions, the ethanol concentration was 47.6 g/l and endoPG concentration was 9.8 U/ml, which represented increases of 22% and 10%, respectively, over the concentrations obtained under suboptimal conditions. Temperature and (NH(4))(2)SO(4) supplementation were the most significant factors influencing the co-production process (AU)


No disponible


Subject(s)
Ethanol/analysis , Kluyveromyces/metabolism , Saccharum , Polygalacturonase/analysis , Fermentation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...