Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849142

ABSTRACT

Acute Kidney Injury (AKI) is characterized by an abrupt decline in kidney function and has been associated with excess risks of death, kidney disease progression, and cardiovascular events. The kidney has a high energetic demand with mitochondrial health being essential to renal function and damaged mitochondria has been reported across AKI subtypes. 5' adenosine monophosphate-activated protein kinase (AMPK) activation preserves cellular energetics through improvement of mitochondrial function and biogenesis when ATP levels are low such as under ischemia-induced AKI. We developed a selective potent small molecule pan AMPK activator, compound 1, and tested its ability to increase AMPK activity and preserve kidney function during ischemia/reperfusion injury in rats. A single administration of 1 caused sustained activation of AMPK for at least 24 hours, protected against acute tubular necrosis, and reduced clinical markers of tubular injury such as NephroCheck and Fractional Excretion of Sodium (FENa). Reduction in plasma creatinine and increased Glomerular Filtration Rate (GFR) indicated preservation of kidney function. Surprisingly, we observed a strong diuretic effect of AMPK activation associated with natriuresis both with and without AKI. Our findings demonstrate that activation of AMPK leads to protection of tubular function under hypoxic/ischemic conditions which holds promise as a potential novel therapeutic approach for AKI. Significance Statement No approved pharmacological therapies currently exist for acute kidney injury. We developed Compound 1 which dose-dependently activated AMPK in the kidney and protected kidney function and tubules after ischemic renal injury in the rat. This was accompanied by natriuresis in injured as well as uninjured rats.

2.
Diabetes Obes Metab ; 25(4): 1068-1079, 2023 04.
Article in English | MEDLINE | ID: mdl-36546607

ABSTRACT

AIM: To develop an obese, insulin-resistant cynomolgus monkey model of non-alcoholic steatohepatitis (NASH) with fibrosis with a high fat/high cholesterol (HFHC) diet (with or without high fructose) and test its responsiveness to caloric restriction or pioglitazone. METHODS: First, two groups of monkeys (n = 24/group) with histologically proven NASH and fibrosis were fed the HFHC diet for 17 weeks. The treatment group was subjected to a 40% caloric restriction (CR) and had their diet switched from the HFHC diet to a chow diet (DSCR). Paired liver biopsies were taken before and 17 weeks after DSCR. Subsets of monkeys (nine/group) had whole liver fat content assessed by MRI. Next, two groups of monkeys with histologically proven NASH and fibrosis were treated with vehicle (n = 9) or pioglitazone (n = 20) over 24 weeks. RESULTS: The HFHC and DSCR groups lost 0.9% and 11.4% of body weight, respectively. After 17 weeks, non-alcoholic fatty liver disease activity score (NAS) improvement was observed in 66.7% of the DSCR group versus 12.5% of the HFHC group (P < .001). Hepatic fat was reduced to 5.2% in the DSCR group versus 23.0% in the HFHC group (P = .0001). After 24 weeks, NAS improvement was seen in 30% of the pioglitazone group versus 0% of the vehicle group (P = .08). CONCLUSIONS: Both weight loss induced by DSCR and treatment with pioglitazone improve the histological features of NASH in a diet-induced cynomolgus monkey model. This model provides a translational preclinical model for testing novel NASH therapies.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Macaca fascicularis , Pioglitazone/therapeutic use , Liver/pathology , Liver Cirrhosis/pathology , Diet, High-Fat , Disease Models, Animal
3.
MAbs ; 12(1): 1794687, 2020.
Article in English | MEDLINE | ID: mdl-32744157

ABSTRACT

The long circulating half-life and inherently bivalent architecture of IgGs provide an ideal vehicle for presenting otherwise short-lived G-protein-coupled receptor agonists in a format that enables avidity-driven enhancement of potency. Here, we describe the site-specific conjugation of a dual agonist peptide (an oxyntomodulin variant engineered for potency and in vivo stability) to the complementarity-determining regions (CDRs) of an immunologically silent IgG4. A cysteine-containing heavy chain CDR3 variant was identified that provided clean conjugation to a bromoacetylated peptide without interference from any of the endogenous mAb cysteine residues. The resulting mAb-peptide homodimer has high potency at both target receptors (glucagon receptor, GCGR, and glucagon-like peptide 1 receptor, GLP-1R) driven by an increase in receptor avidity provided by the spatially defined presentation of the peptides. Interestingly, the avidity effects are different at the two target receptors. A single dose of the long-acting peptide conjugate robustly inhibited food intake and decreased body weight in insulin resistant diet-induced obese mice, in addition to ameliorating glucose intolerance. Inhibition of food intake and decrease in body weight was also seen in overweight cynomolgus monkeys. The weight loss resulting from dosing with the bivalently conjugated dual agonist was significantly greater than for the monomeric analog, clearly demonstrating translation of the measured in vitro avidity to in vivo pharmacology.


Subject(s)
Antibodies, Monoclonal , Eating/drug effects , Obesity , Oxyntomodulin , Peptides , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Cysteine/chemistry , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Obesity/blood , Obesity/drug therapy , Oxyntomodulin/chemistry , Oxyntomodulin/pharmacokinetics , Oxyntomodulin/pharmacology , Peptides/chemistry , Peptides/pharmacokinetics , Peptides/pharmacology
4.
Diabetes Obes Metab ; 22(12): 2437-2450, 2020 12.
Article in English | MEDLINE | ID: mdl-33463043

ABSTRACT

AIM: The aim of this study was to evaluate amino acids as glucagon receptor (GCGR)-specific biomarkers in rodents and cynomolgus monkeys in the presence of agonism of both glucagon-like peptide-1 receptor (GLP1R) and GCGR with a variety of dual agonist compounds. MATERIALS AND METHODS: Primary hepatocytes, rodents (normal, diet-induced obese and GLP1R knockout) and cynomolgus monkeys were treated with insulin (hepatocytes only), glucagon (hepatocytes and cynomolgus monkeys), the GLP1R agonist, dulaglutide, or a variety of dual agonists with varying GCGR potencies. RESULTS: A long-acting dual agonist, Compound 2, significantly decreased amino acids in both wild-type and GLP1R knockout mice in the absence of changes in food intake, body weight, glucose or insulin, and increased expression of hepatic amino acid transporters. Dulaglutide, or a variant of Compound 2 lacking GCGR agonism, had no effect on amino acids. A third variant with ~31-fold less GCGR potency than Compound 2 significantly decreased amino acids, albeit to a significantly lesser extent than Compound 2. Dulaglutide (with saline infusion) had no effect on amino acids, but an infusion of glucagon dose-dependently decreased amino acids on the background of GLP1R engagement (dulaglutide) in cynomolgus monkeys, as did Compound 2. CONCLUSIONS: These results show that amino acids are sensitive and translatable GCGR-specific biomarkers.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Receptors, Glucagon , Amino Acids , Animals , Biomarkers , Glucagon , Mice , Mice, Inbred C57BL , Receptors, Glucagon/genetics
5.
Diabetes ; 67(6): 1173-1181, 2018 06.
Article in English | MEDLINE | ID: mdl-29540491

ABSTRACT

We evaluated the hepatic and nonhepatic responses to glucose-responsive insulin (GRI). Eight dogs received GRI or regular human insulin (HI) in random order. A primed, continuous intravenous infusion of [3-3H]glucose began at -120 min. Basal sampling (-30 to 0 min) was followed by two study periods (150 min each), clamp period 1 (P1) and clamp period 2 (P2). At 0 min, somatostatin and GRI (36 ± 3 pmol/kg/min) or HI (1.8 pmol/kg/min) were infused intravenously; basal glucagon was replaced intraportally. Glucose was infused intravenously to clamp plasma glucose at 80 mg/dL (P1) and 240 mg/dL (P2). Whole-body insulin clearance and insulin concentrations were not different in P1 versus P2 with HI, but whole-body insulin clearance was 23% higher and arterial insulin 16% lower in P1 versus P2 with GRI. Net hepatic glucose output was similar between treatments in P1. In P2, both treatments induced net hepatic glucose uptake (HGU) (HI mean ± SEM 2.1 ± 0.5 vs. 3.3 ± 0.4 GRI mg/kg/min). Nonhepatic glucose uptake in P1 and P2, respectively, differed between treatments (2.6 ± 0.3 and 7.4 ± 0.6 mg/kg/min with HI vs. 2.0 ± 0.2 and 8.1 ± 0.8 mg/kg/min with GRI). Thus, glycemia affected GRI but not HI clearance, with resultant differential effects on HGU and nonHGU. GRI holds promise for decreasing hypoglycemia risk while enhancing glucose uptake under hyperglycemic conditions.


Subject(s)
Drug Evaluation, Preclinical , Drugs, Investigational/adverse effects , Energy Metabolism/drug effects , Hypoglycemic Agents/adverse effects , Insulin, Regular, Human/analogs & derivatives , Liver/drug effects , Absorption, Physiological/drug effects , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Dogs , Dose-Response Relationship, Drug , Drugs, Investigational/administration & dosage , Drugs, Investigational/pharmacokinetics , Gluconeogenesis/drug effects , Glucose Clamp Technique , Glycosylation , Humans , Hyperglycemia/metabolism , Hyperglycemia/prevention & control , Hypoglycemia/chemically induced , Hypoglycemia/metabolism , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/blood , Hypoglycemic Agents/pharmacokinetics , Infusions, Intravenous , Insulin, Regular, Human/administration & dosage , Insulin, Regular, Human/adverse effects , Insulin, Regular, Human/pharmacokinetics , Liver/metabolism , Male , Metabolic Clearance Rate , Random Allocation , Somatostatin/administration & dosage , Somatostatin/adverse effects
6.
Anal Chem ; 89(11): 6065-6075, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28457123

ABSTRACT

As therapeutic recombinant fusion proteins become more widely applicable for the treatment of various types of diseases, there is an increased demand for universal methods such as liquid chromatography (LC)-mass spectrometry (MS) for the determination of their pharmacokinetic properties, particularly their catabolism. The most common approach of analyzing proteins by LC-MS is to digest them into peptides, which can serve as surrogates of the protein. Alternatively, we have developed a novel high-resolution mass spectrometry (HRMS) based approach for analyzing large-molecule proteins at the intact level in biological samples without digestion. We established an immunoaffinity capture LC-HRMS method to quantify the intact parent molecule while simultaneously identifying catabolites for recombinant fusion proteins. We describe this method using dulaglutide, a glucagon-like peptide 1 (GLP1)-Fc fusion protein. Two proteolytic sites within the GLP1 peptide sequence of dulaglutide were identified using this novel LC-HRMS analysis in vivo in mice. These proteolytic sites were identified with the intact molecule being quantified simultaneously. Together with the trypsin digestion based LC-MS/MS analysis using surrogate peptides from different domains of the analyte, an insightful understanding of the pharmacokinetics and in vivo biotransformation of dulaglutide was obtained. Thus, this method enables simultaneous acquisition of both intact drug concentration and important catabolite information for this recombinant fusion protein, providing valuable insight into the integrity of the molecule and its catabolism in vivo. This is critical for designing and screening novel protein therapeutics and for understanding their pharmacokinetics and pharmacodynamics. With continuing advancement of LC-HRMS and software, this method can be very beneficial in drug discovery and development.


Subject(s)
Drug Discovery/methods , Mass Spectrometry/methods , Proteins/analysis , Animals , Biotransformation , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacokinetics , Immunoglobulin Fc Fragments , Mice , Proteins/metabolism , Proteolysis , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/pharmacokinetics
7.
PLoS One ; 10(5): e0126642, 2015.
Article in English | MEDLINE | ID: mdl-25954816

ABSTRACT

Hyperinsulinemic-euglycemic clamps are considered the "gold standard" for assessing whole body insulin sensitivity. When used in combination with tracer dilution techniques and physiological insulin concentrations, insulin sensitization can be dissected and attributed to hepatic and peripheral (primarily muscle) effects. Non-human primates (NHPs), such as rhesus monkeys, are the closest pre-clinical species to humans, and thus serve as an ideal model for testing of compound efficacy to support translation to human efficacy. We determined insulin infusion rates that resulted in high physiological insulin concentrations that elicited maximal pharmacodynamic responses during hyperinsulinemic-euglycemic clamps. These rates were then used with [U-13C]-D-glucose, to assess and document the degrees of hepatic and peripheral insulin resistance between healthy and insulin-resistant, dysmetabolic NHPs. Next, dysmetabolic NHPs were treated for 28 days with pioglitazone (3 mg/kg) and again had their insulin sensitivity assessed, illustrating a significant improvement in hepatic and peripheral insulin sensitivity. This coincided with a significant increase in insulin clearance, and normalization of circulating adiponectin. In conclusion, we have determined a physiological clamp paradigm (similar to humans) for assessing glucose turnover in NHPs. We have also demonstrated that insulin-resistant, dysmetabolic NHPs respond to the established insulin sensitizer, pioglitazone, thus confirming their use as an ideal pre-clinical translational model to assess insulin sensitizing compounds.


Subject(s)
Hypoglycemic Agents/therapeutic use , Insulin Resistance , Insulin/therapeutic use , Obesity/drug therapy , Thiazolidinediones/therapeutic use , Animals , Female , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Macaca mulatta , Male , Pioglitazone , Thiazolidinediones/pharmacology
8.
Eur J Pharmacol ; 715(1-3): 41-5, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23831019

ABSTRACT

Fibroblast growth factor 21 (FGF21) is a novel hormone-like polypeptide that when administered exogenously, has been shown to have beneficial effects on food intake, body weight, and metabolism. The in vivo mechanisms of action for its positive metabolic effects remain to be fully elucidated. It has been shown that PEGylation of human FGF21 at specific and preferred sites confer superior metabolic pharmacology. We therefore hypothesized that low doses of PEGylated (30K PEG on position Q108) FGF21 (PEG30-Q108) would improve insulin action, independent of any effect on food intake or body weight. We identified a dose (0.25mg/kg) that had no effect on food intake or body weight, yet did show beneficial metabolic effects. Four groups of 12 weeks, high-fat fed, insulin resistant mice were studied: mice dosed subcutaneously once with vehicle or 0.25mg/kg of PEG30-Q108 24h before the experiment, or mice dosed 4 times over 2 weeks with vehicle or PEG30-Q108. Conscious, unrestrained mice were fasted for 5h and underwent a hyperinsulinemic-euglycemic clamp. Both PEG30-Q108 treatments significantly lowered fasting insulin compared to vehicle, with no difference in food intake or body weight. Insulin-stimulated whole body glucose utilization was normalized to that of lean mice with both PEG30-Q108 treatments compared to vehicle. This accounted for all of the enhanced insulin action, as there was no improvement in insulin's ability to suppress endogenous glucose production. In line with these findings, neither PEG30-Q108 treatment lowered hepatic triglycerides. These results demonstrate the profound ability of PEG30-Q108 to increase whole body insulin sensitivity.


Subject(s)
Blood Glucose/metabolism , Diet, High-Fat/adverse effects , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/pharmacology , Insulin Resistance , Insulin/metabolism , Polyethylene Glycols/chemistry , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Fatty Acids, Nonesterified/metabolism , Fibroblast Growth Factors/pharmacokinetics , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Retinol-Binding Proteins, Plasma/metabolism , Time Factors , Triglycerides/blood , Triglycerides/metabolism
9.
J Clin Invest ; 119(8): 2412-22, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19662685

ABSTRACT

The hepatic energy state, defined by adenine nucleotide levels, couples metabolic pathways with energy requirements. This coupling is fundamental in the adaptive response to many conditions and is impaired in metabolic disease. We have found that the hepatic energy state is substantially reduced following exercise, fasting, and exposure to other metabolic stressors in C57BL/6 mice. Glucagon receptor signaling was hypothesized to mediate this reduction because increased plasma levels of glucagon are characteristic of metabolic stress and because this hormone stimulates energy consumption linked to increased gluconeogenic flux through cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) and associated pathways. We developed what we believe to be a novel hyperglucagonemic-euglycemic clamp to isolate an increment in glucagon levels while maintaining fasting glucose and insulin. Metabolic stress and a physiological rise in glucagon lowered the hepatic energy state and amplified AMP-activated protein kinase signaling in control mice, but these changes were abolished in glucagon receptor- null mice and mice with liver-specific PEPCK-C deletion. 129X1/Sv mice, which do not mount a glucagon response to hypoglycemia, displayed an increased hepatic energy state compared with C57BL/6 mice in which glucagon was elevated. Taken together, these data demonstrate in vivo that the hepatic energy state is sensitive to glucagon receptor activation and requires PEPCK-C, thus providing new insights into liver metabolism.


Subject(s)
Energy Metabolism , Liver/metabolism , Receptors, Glucagon/physiology , Signal Transduction/physiology , Adenosine Diphosphate/analysis , Adenosine Monophosphate/analysis , Adenosine Triphosphate/analysis , Animals , Glucagon/physiology , Male , Mice , Mice, Inbred C57BL , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism
10.
Endocrinol Metab Clin North Am ; 37(4): 825-40, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19026934

ABSTRACT

The liver plays a pivotal role in the regulation of glucose metabolism because it is the key organ that maintains glucose levels during fasting. An emerging body of literature has demonstrated the important role of the hypothalamus in controlling hepatic glucose production (HGP). The hypothalamus senses circulating nutrients and hormones, conveying the energy status to the central nervous system, which, in turn, controls HGP in part by way of the autonomic nervous system. Overfeeding results in the failure of the hypothalamus to sense circulating nutrients and hormones, and in a loss of the central control of HGP.


Subject(s)
Glucose/metabolism , Hypothalamus/physiology , Insulin Resistance/physiology , Liver/metabolism , Animals , Eating/physiology , Food , Humans , Hypothalamus/metabolism , Insulin/physiology , Leptin/metabolism , Leptin/physiology , Liver/innervation , Liver/physiology , Models, Biological
11.
Am J Physiol Endocrinol Metab ; 290(3): E405-8, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16219665

ABSTRACT

A portal venous 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion that results in hepatic 5-aminoimidazole-4-carboxamide-1-beta-D-ribosyl-5-monophosphate (ZMP) concentrations of approximately 4 micromol/g liver increases hepatic glycogenolysis and glucose output. ZMP is an AMP analog that mimics the regulatory actions of this nucleotide. The aim of this study was to measure hepatic AMP concentrations in response to increasing energy requirements to test the hypothesis that AMP achieves concentrations during exercise, consistent with a role in stimulation of hepatic glucose metabolism. Male C57BL/6J mice (27.4+/- 0.4 g) were subjected to 35 min of rest [sedentary (SED), n=8], underwent short-term (ST, 35 min) moderate (20 m/min, 5% grade) exercise (n=8), or underwent treadmill exercise under similar conditions but until exhaustion (EXH, n=8). Hepatic AMP concentrations were 0.82+/- 0.05, 1.17+/- 0.11, and 2.52+/- 0.16 micromol/g liver in SED, ST, and EXH mice, respectively (P< 0.05). Hepatic energy charge was 0.66+/- 0.01, 0.58+/- 0.02, and 0.33+/- 0.22 in SED, ST, and EXH mice, respectively (P< 0.05). Hepatic glycogen was 11.6+/- 1.0, 8.8+/- 2.2, and 0.0+/- 0.1 mg/g liver in SED, ST, and EXH mice, respectively (P< 0.05). Hepatic AMPK (Thr(172)) phosphorylation was 1.00+/- 0.14, 1.96+/- 0.16, and 7.44+/- 0.63 arbitrary units in SED, ST, and EXH mice, respectively (P< 0.05). Thus exercise increases hepatic AMP concentrations. These data suggest that the liver is highly sensitive to metabolic demands, as evidenced by dramatic changes in cellular energy indicators (AMP) and sensors thereof (AMP-activated protein kinase). In conclusion, AMP is sensitively regulated, consistent with it having an important role in hepatic metabolism.


Subject(s)
Adenosine Monophosphate/metabolism , Liver/metabolism , Physical Exertion/physiology , AMP-Activated Protein Kinase Kinases , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Energy Metabolism , Glucagon/metabolism , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Phosphorylation , Protein Kinases/metabolism
12.
Can J Appl Physiol ; 30(3): 292-303, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16129894

ABSTRACT

The liver is anatomically well situated to regulate blood glucose. It is positioned downstream from the pancreas, which releases the key regulatory hormones glucagon and insulin. It is also just downstream from the gut, permitting efficient extraction of ingested glucose and preventing large excursions in systemic glucose after a glucose-rich meal. The position of the liver is not as well situated from the standpoint of experimentation and clinical assessment, as its primary blood supply is impossible to access in conscious human subjects. Over the last 20 years, to study hepatic glucose metabolism during and after exercise, we have utilized a conscious dog model which permits sampling of the blood that perfuses (portal vein, artery) and drains (hepatic vein) the liver. Our work has demonstrated the key role of exercise-induced changes in glucagon and insulin in stimulating hepatic glycogenolysis and gluconeogenesis during exercise. Recently we showed that portal venous infusion of the pharmacological agent 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside leads to a marked increase in hepatic glucose production. Based on this, we propose that the concentration of AMP may be a component of a physiological pathway for stimulating hepatic glucose production during exercise. Insulin-stimulated hepatic glucose uptake is increased following exercise by an undefined mechanism that is independent of liver glycogen content. The fate of glucose taken up by the liver is critically dependent on hepatic glycogen stores, however, as glycogen deposition is greatly facilitated by prior glycogen depletion.


Subject(s)
Glucose/metabolism , Liver/metabolism , Physical Conditioning, Animal , Animals , Dogs , Glucagon/metabolism , Insulin/metabolism
13.
Am J Physiol Endocrinol Metab ; 289(6): E1039-43, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16046457

ABSTRACT

This study aimed to test whether stimulation of net hepatic glucose output (NHGO) by increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl-5-monophosphate, can be suppressed by pharmacological insulin levels. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic (0-150 min) periods. At time (t) = 0 min, somatostatin was infused, and basal glucagon was replaced via the portal vein. Insulin was infused in the portal vein at either 2 (INS2) or 5 (INS5) mU.kg(-1).min(-1). At t = 60 min, 1 mg.kg(-1).min(-1) portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion was initiated. Arterial insulin rose approximately 9- and approximately 27-fold in INS2 and INS5, respectively. Glucagon, catecholamines, and cortisol did not change throughout the study. NHGO was completely suppressed before t = 60 min. Intraportal AICAR stimulated NHGO by 1.9 +/- 0.5 and 2.0 +/- 0.5 mg.kg(-1).min(-1) in INS2 and INS5, respectively. AICAR stimulated tracer-determined endogenous glucose production similarly in both groups. Intraportal AICAR infusion significantly increased hepatic acetyl-CoA carboxylase (ACC, Ser(79)) phosphorylation in INS2. Hepatic ACC (Ser(79)) phosphorylation, however, was not increased in INS5. Thus intraportal AICAR infusion renders hepatic glucose output insensitive to pharmacological insulin. The effectiveness of AICAR in countering the suppressive effect of pharmacological insulin on NHGO occurs even though AICAR-stimulated ACC phosphorylation is completely blocked.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Liver/drug effects , Liver/metabolism , Ribonucleotides/pharmacology , AMP-Activated Protein Kinases , Aminoimidazole Carboxamide/pharmacology , Animals , Arteries , Blood Glucose/analysis , Dogs , Female , Glucose Clamp Technique , Glycogen/analysis , Infusions, Intravenous , Insulin/administration & dosage , Insulin/blood , Kinetics , Liver/chemistry , Male , Multienzyme Complexes/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
14.
Diabetes ; 54(2): 355-60, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15677492

ABSTRACT

The infusion of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) causes a rise in tissue concentrations of the AMP analog 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranotide (ZMP), which mimics an elevation of cellular AMP levels. The purpose of this work was to determine the effect of raising hepatic ZMP levels on hepatic insulin action in vivo. Dogs had sampling and infusion catheters as well as flow probes implanted 16 days before an experiment. After an 18-h fast, blood glucose was 82 +/- 1 mg/dl and basal net hepatic glucose output 1.5 +/- 0.2 mg . kg(-1) . min(-1). Dogs received portal venous glucose (3.2 mg . kg(-1) . min(-1)), peripheral venous somatostatin, and basal portal venous glucagon infusions from -90 to 60 min. Physiological hyperinsulinemia was established with a portal insulin infusion (1.2 mU . kg(-1) . min(-1)). Peripheral venous glucose infusion was used to clamp arterial blood glucose at 150 mg/dl. Starting at t = 0 min, dogs received portal venous AICAR infusions of 0, 1, or 2 mg . kg(-1) . min(-1). Net hepatic glucose uptake was 2.4 +/- 0.5 mg . kg(-1) . min(-1) (mean of all groups) before t = 0 min. In the absence of AICAR, net hepatic glucose uptake was 1.9 +/- 0.4 mg . kg(-1) . min(-1) at t = 60 min. The lower-dose AICAR infusion caused a complete suppression of net hepatic glucose uptake (-1.0 +/- 1.7 mg . kg(-1) . min(-1) at t = 60 min). The higher AICAR dose resulted in a profound shift in hepatic glucose balance from net uptake to a marked net output (-6.1 +/- 1.9 mg . kg(-1) . min(-1) at t = 60 min), even in the face of hyperglycemia and hyperinsulinemia. These data show that elevations in hepatic ZMP concentrations, induced by portal venous AICAR infusion, cause acute hepatic insulin resistance. These findings have important implications for the targeting of AMP kinase for the treatment of insulin resistance, using AMP analogs.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Insulin Resistance/physiology , Liver/physiology , Ribonucleotides/pharmacology , Aminoimidazole Carboxamide/administration & dosage , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Cyclic AMP/metabolism , Dogs , Female , Glucose Clamp Technique , Glycolysis/drug effects , Hyperinsulinism/blood , Infusions, Intravenous , Liver/drug effects , Male , Patch-Clamp Techniques , Portal Vein/physiology , Ribonucleotides/administration & dosage
15.
Diabetes ; 54(2): 373-82, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15677495

ABSTRACT

AMP-activated protein kinase (AMPK) plays a key role in regulating metabolism, serving as a metabolic master switch. The aim of this study was to assess whether increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-D-ribosyl-5-monophosphate, in the liver would create a metabolic response consistent with an increase in whole-body metabolic need. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before a study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic or -hypoglycemic clamp periods (0-150 min). At t = 0 min, somatostatin was infused and glucagon was replaced in the portal vein at basal rates. An intraportal hyperinsulinemic (2 mU . kg(-1) . min(-1)) infusion was also initiated at this time. Glucose was clamped at hypoglycemic or euglycemic levels in the presence (H-AIC, n = 6; E-AIC, n = 6) or absence (H-SAL, n = 6; E-SAL, n = 6) of a portal venous 5-aminoimidazole-4-carboxamide-ribofuranoside (AICAR) infusion (1 mg . kg(-1) . min(-1)) initiated at t = 60 min. In the presence of intraportal saline, glucose was infused into the vena cava to match glucose levels seen with intraportal AICAR. Glucagon remained fixed at basal levels, whereas insulin rose similarly in all groups. Glucose fell to 50 +/- 2 mg/dl by t = 60 min in hypoglycemic groups and remained at 105 +/- 3 mg/dl in euglycemic groups. Endogenous glucose production (R(a)) was similarly suppressed among groups in the presence of euglycemia or hypoglycemia before t = 60 min and remained suppressed in the H-SAL and E-SAL groups. However, intraportal AICAR infusion stimulated R(a) to increase by 2.5 +/- 1.0 and 3.4 +/- 0.4 mg . kg(-1) . min(-1) in the E-AIC and H-AIC groups, respectively. Arteriovenous measurement of net hepatic glucose output showed similar results. AICAR stimulated hepatic glycogen to decrease by 5 +/- 3 and 19 +/- 5 mg/g tissue (P < 0.05) in the presence of euglycemia and hypoglycemia, respectively. AICAR significantly increased net hepatic lactate output in the presence of hypoglycemia. Thus, intraportal AICAR infusion caused marked stimulation of both hepatic glucose output and net hepatic glycogenolysis, even in the presence of high levels of physiological insulin. This stimulation of glucose output by AICAR was equally marked in the presence of both euglycemia and hypoglycemia. However, hypoglycemia amplified the net hepatic glycogenolytic response to AICAR by approximately fourfold.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Blood Glucose/metabolism , Hyperinsulinism/prevention & control , Ribonucleotides/pharmacology , Aminoimidazole Carboxamide/administration & dosage , Animals , Blood Glucose/drug effects , Dogs , Female , Glucose Clamp Technique , Hepatic Veins , Infusions, Intravenous , Male , Portal Vein , Ribonucleotides/administration & dosage
16.
Exerc Sport Sci Rev ; 33(1): 17-23, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15640716

ABSTRACT

An elegant control system prevents hypoglycemia despite dramatic increments in glucose usage by working muscle. Insulin excess disrupts this control system, leading to hypoglycemia. Recent hypoglycemic episodes blunt the glucoregulatory response to subsequent exercise, and exercise blunts the glucoregulatory response to subsequent insulin excess. These mechanisms of glucoregulatory failure may cause hypoglycemia in insulin-dependent diabetics during and after exercise.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 1/physiopathology , Exercise/physiology , Humans , Hypoglycemia/physiopathology , Muscle, Skeletal/physiopathology
17.
Metabolism ; 53(10): 1290-5, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15375784

ABSTRACT

The purpose of the present study was to assess whether physiological portal vein hyperinsulinemia stimulates gut glucose absorption in vivo. Chronically catheterized (femoral artery, portal vein, inferior vena cava, and proximal and distal duodenum) and instrumented (Doppler flow probe on portal vein) insulin (INS, 2 mU.kg(-1).min(-1), n = 6) or saline (SAL, n = 5) infused dogs were studied during basal (30 minutes) and experimental (90 minutes) periods. Arterial and portal vein plasma insulin were 3.3- and 3.2-fold higher, respectively, throughout the study in INS compared to SAL. An intraduodenal glucose infusion of 8 mg.kg(-1).min(-1) was initiated at t = 0 minutes. At t = 20 and 80 minutes, a bolus of 3-O-[3H]methylglucose (MG) and L-[14C]glucose (L-GLC) was injected intraduodenally. Phloridzin, an inhibitor of the Na+ -dependent glucose transporter (SGLT1), was infused from t = 60 to 90 minutes in the presence of a peripheral isoglycemic clamp. Net gut glucose output (NGGO) was 5.2 +/- 0.6 and 4.6 +/- 0.8 mg.kg(-1).min(-1) in INS and SAL, respectively, from t = 20 to 60 minutes. Transporter-mediated absorption was 87% +/- 2% of NGGO in both INS and SAL. Passive gut glucose absorption was 13% +/- 2% of NGGO in both INS and SAL. Phloridzin-induced inhibition of transporter-mediated absorption completely abolished passive absorption of L-GLC in both groups. This study shows that under physiological conditions, a portal vein insulin infusion that results in circulating hyperinsulinemia does not increase either transporter-mediated or passive absorption of an intraduodenal glucose load.


Subject(s)
Digestive System/metabolism , Glucose/metabolism , Hyperinsulinism/blood , Intestinal Absorption/physiology , Portal Vein/metabolism , Algorithms , Animals , Blood Glucose/metabolism , Dogs , Duodenum/metabolism , Epinephrine/blood , Female , Glucagon/blood , Hydrocortisone/blood , Insulin/blood , Kinetics , Male , Membrane Glycoproteins/metabolism , Monosaccharide Transport Proteins/metabolism , Norepinephrine/blood , Phlorhizin/pharmacology , Regional Blood Flow/physiology , Sodium-Glucose Transporter 1
18.
Am J Physiol Endocrinol Metab ; 287(2): E269-74, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15053988

ABSTRACT

The purpose of this study was to determine whether the sedentary dog is able to autoregulate glucose production (R(a)) in response to non-insulin-induced changes (<20 mg/dl) in arterial glucose. Dogs had catheters implanted >16 days before study. Protocols consisted of basal (-30 to 0 min) and bilateral renal arterial phloridzin infusion (0-180 min) periods. Somatostatin was infused, and glucagon and insulin were replaced to basal levels. In one protocol (Phl +/- Glc), glucose was allowed to fall from t = 0-90 min. This was followed by a period when glucose was infused to restore euglycemia (90-150 min) and a period when glucose was allowed to fall again (150-180 min). In a second protocol (EC), glucose was infused to compensate for the renal glucose loss due to phloridzin and maintain euglycemia from t = 0-180 min. Arterial insulin, glucagon, cortisol, and catecholamines remained at basal in both protocols. In Phl +/- Glc, glucose fell by approximately 20 mg/dl by t = 90 min with phloridzin infusion. R(a) did not change from basal in Phl +/- Glc despite the fall in glucose for the first 90 min. R(a) was significantly suppressed with restoration of euglycemia from t = 90-150 min (P < 0.05) and returned to basal when glucose was allowed to fall from t = 150-180 min. R(a) did not change from basal in EC. In conclusion, the liver autoregulates R(a) in response to small changes in glucose independently of changes in pancreatic hormones at rest. However, the liver of the resting dog is more sensitive to a small increment, rather than decrement, in arterial glucose.


Subject(s)
Blood Glucose/metabolism , Homeostasis/physiology , Liver/metabolism , Monosaccharide Transport Proteins/drug effects , Phlorhizin/pharmacology , Animals , Arteries , Blood Glucose/drug effects , Dogs , Female , Glucagon/blood , Glucose Clamp Technique , Insulin/blood , Kidney Tubules/drug effects , Male , Somatostatin/metabolism
19.
Diabetes ; 53(2): 285-93, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14747277

ABSTRACT

Hyperinsulinemia during exercise in people with diabetes requiring exogenous insulin is a major clinical problem. The aim of this study was to assess the significance of portal vein versus arterial insulin to hepatic effects of hyperinsulinemia during exercise. Dogs had sampling (artery, portal vein, and hepatic vein) and infusion (vena cava and portal vein) catheters and flow probes (hepatic artery and portal vein) implanted >16 days before a study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and treadmill exercise (0-150 min) periods. Somatostatin was infused and glucagon and insulin were replaced in the portal vein to achieve basal arterial and portal vein levels at rest and simulated levels during the first 60 min of exercise. From 60 to 150 min of exercise, the simulated insulin infusion was sustained (C; n = 7), modified to selectively create a physiologic increment in arterial insulin (Pe; n = 7), or altered to increase arterial insulin as in Pe but with a concomitant increase in portal insulin (PePo; n = 7). Euglycemic clamps were performed in all studies. Portal and arterial insulin were 15 +/- 2 and 4 +/- 1 micro U/ml (mean +/- SE of all groups), respectively, at t = 60 min in all groups. Insulin levels were unchanged for the remainder of the exercise period in C. Arterial insulin was increased from 3 +/- 1 to 14 +/- 2 micro U/ml, whereas portal insulin did not change in Pe after t = 60 min. Arterial insulin was increased from 3 +/- 1 to 15 +/- 2 micro U/ml, and portal insulin was increased from 16 +/- 3 to 33 +/- 3 micro U/ml in PePo after t = 60 min. Endogenous glucose production (R(a)) rose similarly from basal during the first 60 min of exercise in all groups (mean +/- SE of all groups was from 2.2 +/- 0.1 to 6.8 +/- 0.5 mg. kg(-1). min(-1)). The increase in R(a) was sustained for the remainder of the exercise period in C. R(a) was suppressed by approximately 40%, but only after 60 min of hyperinsulinemia, and by approximately 20% after 90 min of hyperinsulinemia in Pe. In contrast, the addition of portal venous hyperinsulinemia caused approximately 90% suppression of R(a) within 20 min and for the remainder of the experiment in PePo. Measurements of net hepatic glucose output were similar to R(a) responses in all groups. Arterial free fatty acids (FFAs), a stimulus of R(a), were increased to 1,255 +/- 258 micro mol/l in C but were only 459 +/- 67 and 312 +/- 42 micro mol/l in Pe and PePo, respectively, by 150 min of exercise. Thus, during exercise, the exquisite sensitivity of R(a) to hyperinsulinemia is due entirely to portal venous hyperinsulinemia during the first 60 min, after which peripheral hyperinsulinemia may control approximately 20-40%, possibly as a result of inhibition of the exercise-induced increase in FFA.


Subject(s)
Gluconeogenesis/drug effects , Glucose/metabolism , Insulin/metabolism , Physical Conditioning, Animal/physiology , Portal Vein/physiology , Animals , Arteries , Dogs , Epinephrine/blood , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Glucagon/blood , Glycerol/metabolism , Hydrocortisone/blood , Hyperinsulinism , Insulin/administration & dosage , Insulin/blood , Insulin/pharmacology , Insulin Secretion , Lactates/metabolism , Liver/metabolism , Models, Animal , Norepinephrine/blood
20.
Diabetes ; 51(5): 1310-8, 2002 May.
Article in English | MEDLINE | ID: mdl-11978626

ABSTRACT

These studies were conducted to determine the magnitude and mechanism of compensation for impaired glucagon and insulin responses to exercise. For this purpose, dogs underwent surgery >16 days before experiments, at which time flow probes were implanted and silastic catheters were inserted. During experiments, glucagon and insulin were fixed at basal levels during rest and exercise using a pancreatic clamp with glucose clamped (PC/GC; n = 5), a pancreatic clamp with glucose unclamped (PC; n = 7), or a pancreatic clamp with glucose unclamped + intraportal propranolol and phentolamine hepatic alpha- and beta-adrenergic receptor blockade (PC/HAB; n = 6). Glucose production (R(a)) was measured isotopically. Plasma glucose was constant in PC/GC, but fell from basal to exercise in PC and PC/HAB. R(a) was unchanged with exercise in PC/GC, but was slightly increased during exercise in PC and PC/HAB. Despite minimal increases in epinephrine in PC/GC, epinephrine increased approximately sixfold in PC and PC/HAB during exercise. In summary, during moderate exercise, 1) the increase in R(a) is absent in PC/GC; 2) only a moderate fall in arterial glucose occurs in PC, due to a compensatory increase in R(a); and 3) the increase in R(a) is preserved in PC/HAB. In conclusion, stimulation of R(a) by a mechanism independent of pancreatic hormones and hepatic adrenergic stimulation is a primary defense against overt hypoglycemia.


Subject(s)
Blood Glucose/biosynthesis , Epinephrine/blood , Hypoglycemia/prevention & control , Norepinephrine/blood , Physical Exertion/physiology , Adrenergic alpha-Antagonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Alanine/blood , Animals , Dogs , Fatty Acids, Nonesterified/blood , Glucagon/blood , Glucose Clamp Technique , Glycerol/blood , Heart Rate , Hypoglycemia/drug therapy , Hypoglycemia/metabolism , Insulin/blood , Lactic Acid/blood , Liver/metabolism , Liver Circulation
SELECTION OF CITATIONS
SEARCH DETAIL
...