Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38652860

ABSTRACT

Phototherapies are promising for noninvasive treatment of aggressive tumors, especially when combining heat induction and oxidative processes. Herein, we show enhanced phototoxicity of gold shell-isolated nanorods conjugated with toluidine blue-O (AuSHINRs@TBO) against human colorectal tumor cells (Caco-2) with synergic effects of photothermal (PTT) and photodynamic therapies (PDT). Mitochondrial metabolic activity tests (MTT) performed on Caco-2 cell cultures indicated a photothermal effect from AuSHINRs owing to enhanced light absorption from the localized surface plasmon resonance (LSPR). The phototoxicity against Caco-2 cells was further increased with AuSHINRs@TBO where oxidative processes, such as hydroperoxidation, were also present, leading to a cell viability reduction from 85.5 to 39.0%. The molecular-level mechanisms responsible for these effects were investigated on bioinspired tumor membranes using Langmuir monolayers of Caco-2 lipid extract. Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) revealed that the AuSHINRs@TBO incorporation is due to attractive electrostatic interactions with negatively charged groups of the Caco-2 lipid extract, resulting in the expansion of surface pressure isotherms. Upon irradiation, Caco-2 lipid extract monolayers containing AuSHINRs@TBO (1:1 v/v) exhibited ca. 1.0% increase in surface area. This is attributed to the generation of reactive oxygen species (ROS) and their interaction with Caco-2 lipid extract monolayers, leading to hydroperoxide formation. The oxidative effects are facilitated by AuSHINRs@TBO penetration into the polar groups of the extract, allowing oxidative reactions with carbon chain unsaturations. These mechanisms are consistent with findings from confocal fluorescence microscopy, where the Caco-2 plasma membrane was the primary site of the cell death induction process.

2.
Sensors (Basel) ; 20(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861443

ABSTRACT

Detection of the drug Levodopa (3,4-dihydroxyphenylalanine, L-Dopa) is essential for the medical treatment of several neural disorders, including Parkinson's disease. In this paper, we employed surface-enhanced Raman scattering (SERS) with three shapes of silver nanoparticles (nanostars, AgNS; nanospheres, AgNP; and nanoplates, AgNPL) to detect L-Dopa in the nanoparticle dispersions. The sensitivity of the L-Dopa SERS signal depended on both nanoparticle shape and L-Dopa concentration. The adsorption mechanisms of L-Dopa on the nanoparticles inferred from a detailed analysis of the Raman spectra allowed us to determine the chemical groups involved. For instance, at concentrations below/equivalent to the limit found in human plasma (between 10-7-10-8 mol/L), L-Dopa adsorbs on AgNP through its ring, while at 10-5-10-6 mol/L adsorption is driven by the amino group. At even higher concentrations, above 10-4 mol/L, L-Dopa polymerization predominates. Therefore, our results show that adsorption depends on both the type of Ag nanoparticles (shape and chemical groups surrounding the Ag surface) and the L-Dopa concentration. The overall strategy based on SERS is a step forward to the design of nanostructures to detect analytes of clinical interest with high specificity and at varied concentration ranges.

SELECTION OF CITATIONS
SEARCH DETAIL
...