Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Biol Trace Elem Res ; 200(5): 2008-2015, 2022 May.
Article in English | MEDLINE | ID: mdl-34245425

ABSTRACT

Tobacco use has a negative impact on health due to its relationship with the development of high-mortality diseases, such as pulmonary cancer. However, the effect of cadmium (Cd), present in tobacco smoke, on the development of joint diseases has been scarcely studied. The objective of this review is to discuss the evidence regarding the mechanisms by which Cd exposure, through tobacco smoke, may lead to the development of osteoarthritis (OA), osteoporosis (OP), and rheumatoid arthritis (RA). There's evidence suggesting a string association between moderate to severe OA development and tobacco use, and that a higher blood concentration of Cd can trigger oxidative stress (OS) and inflammation, favoring cartilage loss. At the bone level, the Cd that is inhaled through tobacco smoke affects bone mineral density, resulting in OP mediated by a decrease in the antioxidant enzymes, which favors the bone resorption process. In RA, tobacco use promotes the citrullination process through Cd exposure and increases OS and inflammation. Understanding how tobacco use can increase the damage at the articular level mediated by a toxic metal, i.e., Cd, is important. Finally, we propose prevention, control, and treatment strategies for frequently disabling diseases, such as OA, OP, and RA to reduce its prevalence in the population.


Subject(s)
Arthritis, Rheumatoid , Musculoskeletal Diseases , Osteoarthritis , Osteoporosis , Tobacco Smoke Pollution , Cadmium/toxicity , Humans , Inflammation , Nicotiana/adverse effects , Tobacco Use
3.
J Trace Elem Med Biol ; 62: 126614, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32682287

ABSTRACT

BACKGROUND: An essential element imbalance in the joint might favor gradual degeneration of the articular cartilage. It has been reported that cadmium (Cd) plays an antagonistic role with regards to the presence of essential elements, such as zinc (Zn), iron (Fe), and manganese (Mn), which may favor the development of disabling diseases, like osteoarthritis (OA) and osteoporosis. METHODS: 3D cultures of human chondrocytes were phenotyped with the Western blot technique and structurally evaluated with histological staining. The samples were exposed to 1, 5, and 10 µM of CdCl2 for 12 h, with a non-exposed culture as control. The concentration of Cd, Fe, Mn, Zn, chromium (Cr), and nickel (Ni) was quantified through plasma mass spectrometry (ICP-MS). The data were analyzed with a Kruskal Wallis test, a Kendall's Tau test and Spearman's correlation coefficient with the Stata program, version 14. RESULTS: Our results suggest that Cd exposure affects the structure of micromass cultures and plays an antagonistic role on the concentration of essential metals, such as Zn, Ni, Fe, Mn, and Cr. CONCLUSION: Cd exposure may be a risk factor for developing joint diseases like OA, as it can interfere with cartilage absorption of other essential elements that maintain cartilage homeostasis.


Subject(s)
Cadmium/pharmacology , Chondrocytes/drug effects , Chondrocytes/metabolism , Adult , Blotting, Western , Cadmium/metabolism , Humans , Immunophenotyping , Iron/metabolism , Male , Mass Spectrometry , Nickel/metabolism , Osteoarthritis/metabolism , Young Adult , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL