Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (208)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38912799

ABSTRACT

Baker´s yeast Saccharomyces cerevisiae has been widely used to understand mitochondrial biology for decades. This model has provided knowledge about essential, conserved mitochondrial pathways among eukaryotes, and fungi or yeast-specific pathways. One of the many abilities of S. cerevisiae is the capacity to manipulate the mitochondrial genome, which so far is only possible in S. cerevisiae and the unicellular algae Chlamydomonas reinhardtii. The biolistic transformation of yeast mitochondria allows us to introduce site-directed mutations, make gene rearrangements, and introduce reporters. These approaches are mainly used to understand the mechanisms of two highly coordinated processes in mitochondria: translation by mitoribosomes and assembly of respiratory complexes and ATP synthase. However, mitochondrial transformation can potentially be used to study other pathways. In the present work, we show how to transform yeast mitochondria by high-velocity microprojectile bombardment, select and purify the intended transformant, and introduce the desired mutation in the mitochondrial genome.


Subject(s)
Mitochondria , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Transformation, Genetic , Biolistics/methods , Protein Biosynthesis , Genome, Mitochondrial/genetics
2.
Methods Mol Biol ; 2661: 281-301, 2023.
Article in English | MEDLINE | ID: mdl-37166643

ABSTRACT

Mitochondrial translation is an intricate process involving both general and mRNA-specific factors. In addition, in the yeast Saccharomyces cerevisiae, translation of mitochondrial mRNAs is coupled to assembly of nascent polypeptides into the membrane. ARG8m is a reporter gene widely used to study the mechanisms of yeast mitochondrial translation. This reporter is a recodified gene that uses the mitochondrial genetic code and is inserted at the desired locus in the mitochondrial genome. After deletion of the endogenous nuclear gene, this reporter produces Arg8, an enzyme necessary for arginine biosynthesis. Since Arg8 is a soluble protein with no relation to oxidative phosphorylation, it is a reliable reporter to study mitochondrial mRNAs translation and dissect translation form assembly processes. In this chapter, we explain how to insert the ARG8m reporter in the desired spot in the mitochondrial DNA, how to analyze Arg8 synthesis inside mitochondria, and how to follow steady-state levels of the protein. We also explain how to use it to find spontaneous suppressors of translation defects.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Protein Biosynthesis , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
3.
Life Sci Alliance ; 6(7)2023 07.
Article in English | MEDLINE | ID: mdl-37094942

ABSTRACT

Mitochondrial bc 1 complex from yeast has 10 subunits, but only cytochrome b (Cytb) subunit is encoded in the mitochondrial genome. Cytb has eight transmembrane helices containing two hemes b for electron transfer. Cbp3 and Cbp6 assist Cytb synthesis, and together with Cbp4 induce Cytb hemylation. Subunits Qcr7/Qcr8 participate in the first steps of assembly, and lack of Qcr7 reduces Cytb synthesis through an assembly-feedback mechanism involving Cbp3/Cbp6. Because Qcr7 resides near the Cytb carboxyl region, we wondered whether this region is important for Cytb synthesis/assembly. Although deletion of the Cytb C-region did not abrogate Cytb synthesis, the assembly-feedback regulation was lost, so Cytb synthesis was normal even if Qcr7 was missing. Mutants lacking the Cytb C-terminus were non-respiratory because of the absence of fully assembled bc 1 complex. By performing complexome profiling, we showed the existence of aberrant early-stage subassemblies in the mutant. In this work, we demonstrate that the C-terminal region of Cytb is critical for regulation of Cytb synthesis and bc 1 complex assembly.


Subject(s)
Cytochromes b , Saccharomyces cerevisiae Proteins , Cytochromes b/genetics , Cytochromes b/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Electron Transport Complex III , Saccharomyces cerevisiae/metabolism , Mitochondria/metabolism , Carrier Proteins , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Mitochondrial Proteins/genetics
4.
Nucleic Acids Res ; 47(11): 5746-5760, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30968120

ABSTRACT

Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.


Subject(s)
Electron Transport Complex IV/chemistry , Gene Expression Regulation, Fungal , Gene Expression Regulation , Mitochondrial Ribosomes/metabolism , Protein Biosynthesis , Saccharomyces cerevisiae/genetics , Arabidopsis/metabolism , DNA, Mitochondrial/metabolism , Humans , Kluyveromyces/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Ribosomes/chemistry , Oryza/metabolism , Oxidative Phosphorylation , Polyribosomes/metabolism , RNA, Messenger/metabolism , RNA, Mitochondrial , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Yarrowia/metabolism
5.
J Biol Chem ; 293(15): 5585-5599, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29475949

ABSTRACT

Cytochrome b (Cytb) is the only mitochondrial encoded subunit from the bc1 complex. Cbp3 and Cbp6 are chaperones necessary for translation of the COB mRNA and Cytb hemylation. Here we demonstrate that their role in translation is dispensable in some laboratory strains, whereas their role in Cytb hemylation seems to be universally conserved. BY4742 yeast requires Cbp3 and Cbp6 for efficient COB mRNA translation, whereas the D273-10b strain synthesizes Cytb at wildtype levels in the absence of Cbp3 and Cbp6. Steady-state levels of Cytb are close to wildtype in mutant D273-10b cells, and Cytb forms non-functional, supercomplex-like species with cytochrome c oxidase, in which at least core 1, cytochrome c1, and Rieske iron-sulfur subunits are present. We demonstrated that Cbp3 interacts with the mitochondrial ribosome and with the COB mRNA in both BY4742 and D273-10b strains. The polymorphism(s) causing the differential function of Cbp3, Cbp6, and the assembly feedback regulation of Cytb synthesis is of nuclear origin rather than mitochondrial, and Smt1, a COB mRNA-binding protein, does not seem to be involved in the observed differential phenotype. Our results indicate that the essential role of Cbp3 and Cbp6 is to assist Cytb hemylation and demonstrate that in the absence of heme b, Cytb can form non-functional supercomplexes with cytochrome c oxidase. Our observations support that an additional protein or proteins are involved in Cytb synthesis in some yeast strains.


Subject(s)
Cytochromes b/biosynthesis , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/biosynthesis , Molecular Chaperones/metabolism , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cytochromes b/genetics , Cytochromes c1/genetics , Cytochromes c1/metabolism , Membrane Proteins/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Chaperones/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
J Biol Chem ; 292(26): 10912-10925, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28490636

ABSTRACT

Cytochrome c oxidase (CcO) is the last electron acceptor in the respiratory chain. The CcO core is formed by mitochondrial DNA-encoded Cox1, Cox2, and Cox3 subunits. Cox1 synthesis is highly regulated; for example, if CcO assembly is blocked, Cox1 synthesis decreases. Mss51 activates translation of COX1 mRNA and interacts with Cox1 protein in high-molecular-weight complexes (COA complexes) to form the Cox1 intermediary assembly module. Thus, Mss51 coordinates both Cox1 synthesis and assembly. We previously reported that the last 15 residues of the Cox1 C terminus regulate Cox1 synthesis by modulating an interaction of Mss51 with Cox14, another component of the COA complexes. Here, using site-directed mutagenesis of the mitochondrial COX1 gene from Saccharomyces cerevisiae, we demonstrate that mutations P521A/P522A and V524E disrupt the regulatory role of the Cox1 C terminus. These mutations, as well as C terminus deletion (Cox1ΔC15), reduced binding of Mss51 and Cox14 to COA complexes. Mss51 was enriched in a translationally active form that maintains full Cox1 synthesis even if CcO assembly is blocked in these mutants. Moreover, Cox1ΔC15, but not Cox1-P521A/P522A and Cox1-V524E, promoted formation of aberrant supercomplexes in CcO assembly mutants lacking Cox2 or Cox4 subunits. The aberrant supercomplex formation depended on the presence of cytochrome b and Cox3, supporting the idea that supercomplex assembly factors associate with Cox3 and demonstrating that supercomplexes can be formed even if CcO is inactive and not fully assembled. Our results indicate that the Cox1 C-terminal end is a key regulator of CcO biogenesis and that it is important for supercomplex formation/stability.


Subject(s)
Electron Transport Complex IV/metabolism , Mitochondria/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Substitution , Electron Transport Complex IV/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation, Missense , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
7.
J Biol Chem ; 291(17): 9343-55, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-26929411

ABSTRACT

Cytochrome c oxidase assembly requires the synthesis of the mitochondria-encoded core subunits, Cox1, Cox2, and Cox3. In yeast, Pet54 protein is required to activate translation of the COX3 mRNA and to process the aI5ß intron on the COX1 transcript. Here we report a third, novel function of Pet54 on Cox1 synthesis. We observed that Pet54 is necessary to achieve an efficient Cox1 synthesis. Translation of the COX1 mRNA is coupled to the assembly of cytochrome c oxidase by a mechanism that involves Mss51. This protein activates translation of the COX1 mRNA by acting on the COX1 5'-UTR, and, in addition, it interacts with the newly synthesized Cox1 protein in high molecular weight complexes that include the factors Coa3 and Cox14. Deletion of Pet54 decreased Cox1 synthesis, and, in contrast to what is commonly observed for other assembly mutants, double deletion of cox14 or coa3 did not recover Cox1 synthesis. Our results show that Pet54 is a positive regulator of Cox1 synthesis that renders Mss51 competent as a translational activator of the COX1 mRNA and that this role is independent of the assembly feedback regulatory loop of Cox1 synthesis. Pet54 may play a role in Mss51 hemylation/conformational change necessary for translational activity. Moreover, Pet54 physically interacts with the COX1 mRNA, and this binding was independent of the presence of Mss51.


Subject(s)
Electron Transport Complex IV/biosynthesis , Mitochondrial Proteins/biosynthesis , Protein Biosynthesis/physiology , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , 5' Untranslated Regions/physiology , Electron Transport Complex IV/genetics , Mitochondrial Proteins/genetics , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
RNA Biol ; 11(7): 953-67, 2014.
Article in English | MEDLINE | ID: mdl-25181249

ABSTRACT

Mitochondrial synthesis of Cox1, the largest subunit of the cytochrome c oxidase complex, is controlled by Mss51 and Pet309, two mRNA-specific translational activators that act via the COX1 mRNA 5'-UTR through an unknown mechanism. Pet309 belongs to the pentatricopeptide repeat (PPR) protein family, which is involved in RNA metabolism in mitochondria and chloroplasts, and its sequence predicts at least 12 PPR motifs in the central portion of the protein. Deletion of these motifs selectively disrupted translation but not accumulation of the COX1 mRNA. We used RNA coimmunoprecipitation assays to show that Pet309 interacts with the COX1 mRNA in vivo and that this association is present before processing of the COX1 mRNA from the ATP8/6 polycistronic mRNA. This association was not affected by deletion of 8 of the PPR motifs but was undetectable after deletion of the entire 12-PPR region. However, interaction of the Pet309 protein lacking 12 PPR motifs with the COX1 mRNA was detected after overexpression of the mutated form of the protein, suggesting that deletion of this region decreased the binding affinity for the COX1 mRNA without abolishing it entirely. Moreover, binding of Pet309 to the COX1 mRNA was affected by deletion of Mss51. This work demonstrates an in vivo physical interaction between a yeast mitochondrial translational activator and its target mRNA and shows the cooperativity of the PPR domains of Pet309 in interaction with the COX1 mRNA.


Subject(s)
Electron Transport Complex IV/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Peptide Initiation Factors/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , Electron Transport Complex IV/metabolism , Gene Expression Regulation, Fungal , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Mutation , Peptide Initiation Factors/genetics , RNA, Fungal/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics
9.
J Biol Chem ; 285(45): 34382-9, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20807763

ABSTRACT

Synthesis of the largest cytochrome c oxidase (CcO) subunit, Cox1, on yeast mitochondrial ribosomes is coupled to assembly of CcO. The translational activator Mss51 is sequestered in early assembly intermediate complexes by an interaction with Cox14 that depends on the presence of newly synthesized Cox1. If CcO assembly is prevented, the level of Mss51 available for translational activation is reduced. We deleted the C-terminal 11 or 15 residues of Cox1 by site-directed mutagenesis of mtDNA. Although these deletions did not prevent respiratory growth of yeast, they eliminated the assembly-feedback control of Cox1 synthesis. Furthermore, these deletions reduced the strength of the Mss51-Cox14 interaction as detected by co-immunoprecipitation, confirming the importance of the Cox1 C-terminal residues for Mss51 sequestration. We surveyed a panel of mutations that block CcO assembly for the strength of their effect on Cox1 synthesis, both by pulse labeling and expression of the ARG8(m) reporter fused to COX1. Deletion of the nuclear gene encoding Cox6, one of the first subunits to be added to assembling CcO, caused the most severe reduction in Cox1 synthesis. Deletion of the C-terminal 15 amino acids of Cox1 increased Cox1 synthesis in the presence of each of these mutations, except pet54. Our data suggest a novel activity of Pet54 required for normal synthesis of Cox1 that is independent of the Cox1 C-terminal end.


Subject(s)
Electron Transport Complex IV/biosynthesis , Mitochondria/enzymology , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Electron Transport Complex IV/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Deletion , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/physiology
10.
Curr Top Med Chem ; 8(15): 1335-50, 2008.
Article in English | MEDLINE | ID: mdl-18991722

ABSTRACT

Human mitochondrial DNA (mtDNA) codes for 13 polypeptides which constitute the central core of the oxidative phosphorylation (OXPHOS) complexes. The machinery for mitochondrial protein synthesis has a dual origin: a full set of tRNAs, as well as the 12S and 16S rRNAs are encoded in the mitochondrial genome, while most factors necessary for translation are encoded by nuclear genes. The mitochondrial translation apparatus is highly specialized in expressing membrane proteins, and couples the synthesis of proteins to the insertion into the mitochondrial inner membrane. In recent years it has become clear that defects of mitochondrial translation and protein assembly cause several mitochondrial disorders. Since direct studies on protein synthesis in human mitochondria are still a relatively difficult task, we owe our current knowledge of this field to the large amount of genetic and biochemical studies performed in the yeast Saccharomyces cerevisiae. These studies have allowed the identification of several genes involved in mitochondrial protein synthesis and assembly, and have provided insights into the conserved mechanisms of mitochondrial gene expression. In the present review we will discuss the most recent advances in the understanding of the mechanisms and factors that govern mammalian mitochondrial translation/protein insertion, as well as known pathologies associated with them.


Subject(s)
Mitochondrial Diseases/metabolism , Protein Biosynthesis , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Oxidative Phosphorylation , Peptide Chain Initiation, Translational/genetics , Protein Biosynthesis/genetics , Ribosomes/genetics , Ribosomes/metabolism
11.
J Biol Chem ; 283(3): 1472-1479, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18039654

ABSTRACT

Pet309 is a protein essential for respiratory growth. It is involved in translation of the yeast mitochondrial COX1 gene, which encodes subunit I of the cytochrome c oxidase. Pet309 is also involved in stabilization of the COX1 mRNA. Mutations in a similar human protein, Lrp130, are associated with Leigh syndrome, where cytochrome c oxidase activity is affected. The sequence of Pet309 reveals the presence of at least seven pentatricopeptide repeats (PPRs) located in tandem in the central portion of the protein. Proteins containing PPR motifs are present in mitochondria and chloroplasts and are in general involved in RNA metabolism. Despite the increasing number of proteins from this family found to play essential roles in mitochondria and chloroplasts, little is understood about the mechanism of action of the PPR domains present in these proteins. In a series of in vivo analyses we constructed a pet309 mutant lacking the PPR motifs. Although the stability of the COX1 mRNA was not affected, synthesis of Cox1 was abolished. The deletion of one PPR motif at a time showed that all the PPR motifs are required for COX1 mRNA translation and respiratory growth. Mutations of basic residues in PPR3 caused reduced respiratory growth. According to a molecular model, these residues are facing a central cavity that could be involved in mRNA-binding activity, forming a possible path for this molecule on Pet309. Our results show that the RNA metabolism function of Pet309 is found in at least two separate domains of the protein.


Subject(s)
Electron Transport Complex IV/genetics , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Biosynthesis , RNA Stability , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/enzymology , Amino Acid Motifs , Amino Acids , Electron Transport Complex IV/biosynthesis , Gene Expression Regulation, Fungal , Mitochondria/metabolism , Mitochondrial Proteins , Models, Molecular , Mutagenesis , Peptide Initiation Factors , Protein Structure, Tertiary , Protein Transport , RNA, Fungal/metabolism , RNA, Mitochondrial , Repetitive Sequences, Amino Acid , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...