Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Genomics ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969258

ABSTRACT

Human UDP-glycosyltransferases (UGTs) are responsible for the glucuronidation of a wide variety of endogenous substrates and multiple commonly prescribed drugs. Different genetic polymorphisms in UGT genes are implicated in interindividual differences in drug response and cancer risk. However, the genetic complexity beyond these variants has not been comprehensively assessed. We here leveraged whole-exome and whole-genome sequencing data from 141,456 unrelated individuals across seven major human populations to provide a comprehensive profile of genetic variability across the human UGT gene family. Overall, 9666 exonic variants were observed of which 98.9% were rare. To interpret the functional impact of UGT missense variants, we developed a gene family-specific variant effect predictor. This algorithm identified a total of 1208 deleterious variants, most of which were found in African and South Asian populations. Structural analysis corroborated the predicted effects for multiple variations in substrate binding sites. Combined, our analyses provide a systematic overview of UGT variability, which can yield insights into inter-individual differences in phase 2 metabolism and facilitate the translation of sequencing data into personalized predictions of UGT substrate disposition.

2.
Hum Genomics ; 18(1): 40, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650020

ABSTRACT

BACKGROUND: CYP2C8 is responsible for the metabolism of 5% of clinically prescribed drugs, including antimalarials, anti-cancer and anti-inflammatory drugs. Genetic variability is an important factor that influences CYP2C8 activity and modulates the pharmacokinetics, efficacy and safety of its substrates. RESULTS: We profiled the genetic landscape of CYP2C8 variability using data from 96 original studies and data repositories that included a total of 33,185 unrelated participants across 44 countries and 43 ethnic groups. The reduced function allele CYP2C8*2 was most common in West and Central Africa with frequencies of 16-36.9%, whereas it was rare in Europe and Asia (< 2%). In contrast, CYP2C8*3 and CYP2C8*4 were common throughout Europe and the Americas (6.9-19.8% for *3 and 2.3-7.5% for *4), but rare in African and East Asian populations. Importantly, we observe pronounced differences (> 2.3-fold) between neighboring countries and even between geographically overlapping populations. Overall, we found that 20-60% of individuals in Africa and Europe carry at least one CYP2C8 allele associated with reduced metabolism and increased adverse event risk of the anti-malarial amodiaquine. Furthermore, up to 60% of individuals of West African ancestry harbored variants that reduced the clearance of pioglitazone, repaglinide, paclitaxel and ibuprofen. In contrast, reduced function alleles are only found in < 2% of East Asian and 8.3-12.8% of South and West Asian individuals. CONCLUSIONS: Combined, the presented analyses mapped the genetic and inferred functional variability of CYP2C8 with high ethnogeographic resolution. These results can serve as a valuable resource for CYP2C8 allele frequencies and distribution estimates of CYP2C8 phenotypes that could help identify populations at risk upon treatment with CYP2C8 substrates. The high variability between ethnic groups incentivizes high-resolution pharmacogenetic profiling to guide precision medicine and maximize its socioeconomic benefits, particularly for understudied populations with distinct genetic profiles.


Subject(s)
Alleles , Carbamates , Cytochrome P-450 CYP2C8 , Piperidines , Cytochrome P-450 CYP2C8/genetics , Humans , Gene Frequency/genetics , Polymorphism, Single Nucleotide/genetics , Europe , Thiazolidinediones/adverse effects
3.
Antimicrob Agents Chemother ; 68(5): e0139023, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38546223

ABSTRACT

Dihydroartemisinin-piperaquine is efficacious for the treatment of uncomplicated malaria and its use is increasing globally. Despite the positive results in fighting malaria, inhibition of the Kv11.1 channel (hERG; encoded by the KCNH2 gene) by piperaquine has raised concerns about cardiac safety. Whether genetic factors could modulate the risk of piperaquine-mediated QT prolongations remained unclear. Here, we first profiled the genetic landscape of KCNH2 variability using data from 141,614 individuals. Overall, we found 1,007 exonic variants distributed over the entire gene body, 555 of which were missense. By optimizing the gene-specific parametrization of 16 partly orthogonal computational algorithms, we developed a KCNH2-specific ensemble classifier that identified a total of 116 putatively deleterious missense variations. To evaluate the clinical relevance of KCNH2 variability, we then sequenced 293 Malian patients with uncomplicated malaria and identified 13 variations within the voltage sensing and pore domains of Kv11.1 that directly interact with channel blockers. Cross-referencing of genetic and electrocardiographic data before and after piperaquine exposure revealed that carriers of two common variants, rs1805121 and rs41314375, experienced significantly higher QT prolongations (ΔQTc of 41.8 ms and 61 ms, respectively, vs 14.4 ms in controls) with more than 50% of carriers having increases in QTc >30 ms. Furthermore, we identified three carriers of rare population-specific variations who experienced clinically relevant delayed ventricular repolarization. Combined, our results map population-scale genetic variability of KCNH2 and identify genetic biomarkers for piperaquine-induced QT prolongation that could help to flag at-risk patients and optimize efficacy and adherence to antimalarial therapy.


Subject(s)
Antimalarials , Artemisinins , ERG1 Potassium Channel , Piperazines , Quinolines , Humans , ERG1 Potassium Channel/genetics , Antimalarials/therapeutic use , Antimalarials/adverse effects , Quinolines/therapeutic use , Quinolines/adverse effects , Artemisinins/therapeutic use , Artemisinins/adverse effects , Male , Female , Adult , Malaria/drug therapy , Electrocardiography , Long QT Syndrome/genetics , Long QT Syndrome/chemically induced , Polymorphism, Single Nucleotide/genetics
4.
Expert Opin Drug Metab Toxicol ; 18(1): 39-59, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35285373

ABSTRACT

INTRODUCTION: Artemisinin-based combination therapies (ACTs) are recommended first-line antimalarials for uncomplicated Plasmodium falciparum malaria. Pharmacokinetic/pharmacodynamic variation associated with ACT drugs and their effect is documented. It is accepted to an extent that inter-individual variation is genetically driven, and should be explored for optimized antimalarial use. AREAS COVERED: We provide an update on the pharmacogenetics of ACT antimalarial disposition. Beyond presently used antimalarials, we also refer to information available for the most notable next-generation drugs under development. The bibliographic approach was based on multiple Boolean searches on PubMed covering all recent publications since our previous review. EXPERT OPINION: The last 10 years have witnessed an increase in our knowledge of ACT pharmacogenetics, including the first clear examples of its contribution as an exacerbating factor for drug-drug interactions. This knowledge gap is still large and is likely to widen as a new wave of antimalarial drug is looming, with few studies addressing their pharmacogenetics. Clinically useful pharmacogenetic markers are still not available, in particular, from an individual precision medicine perspective. A better understanding of the genetic makeup of target populations can be valuable for aiding decisions on mass drug administration implementation concerning region-specific antimalarial drug and dosage options.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Antimalarials/adverse effects , Artemisinins , Drug Resistance , Drug Therapy, Combination , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/genetics , Pharmacogenetics , Plasmodium falciparum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...