Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 244: 118589, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34563682

ABSTRACT

MRI plays a crucial role in multiple sclerosis diagnostic and patient follow-up. In particular, the delineation of T2-FLAIR hyperintense lesions is crucial although mostly performed manually - a tedious task. Many methods have thus been proposed to automate this task. However, sufficiently large datasets with a thorough expert manual segmentation are still lacking to evaluate these methods. We present a unique dataset for MS lesions segmentation evaluation. It consists of 53 patients acquired on 4 different scanners with a harmonized protocol. Hyperintense lesions on FLAIR were manually delineated on each patient by 7 experts with control on T2 sequence, and gathered in a consensus segmentation for evaluation. We provide raw and preprocessed data and a split of the dataset into training and testing data, the latter including data from a scanner not present in the training dataset. We strongly believe that this dataset will become a reference in MS lesions segmentation evaluation, allowing to evaluate many aspects: evaluation of performance on unseen scanner, comparison to individual experts performance, comparison to other challengers who already used this dataset, etc.


Subject(s)
Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Adult , Datasets as Topic , Female , Humans , Male , Middle Aged , Young Adult
2.
Gigascience ; 7(5)2018 05 01.
Article in English | MEDLINE | ID: mdl-29718199

ABSTRACT

We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.


Subject(s)
Computational Biology/methods , Software , Brain/diagnostic imaging , Humans , Neuroimaging , Reproducibility of Results
3.
Med Image Anal ; 44: 177-195, 2018 02.
Article in English | MEDLINE | ID: mdl-29268169

ABSTRACT

INTRODUCTION: Automatic functional volume segmentation in PET images is a challenge that has been addressed using a large array of methods. A major limitation for the field has been the lack of a benchmark dataset that would allow direct comparison of the results in the various publications. In the present work, we describe a comparison of recent methods on a large dataset following recommendations by the American Association of Physicists in Medicine (AAPM) task group (TG) 211, which was carried out within a MICCAI (Medical Image Computing and Computer Assisted Intervention) challenge. MATERIALS AND METHODS: Organization and funding was provided by France Life Imaging (FLI). A dataset of 176 images combining simulated, phantom and clinical images was assembled. A website allowed the participants to register and download training data (n = 19). Challengers then submitted encapsulated pipelines on an online platform that autonomously ran the algorithms on the testing data (n = 157) and evaluated the results. The methods were ranked according to the arithmetic mean of sensitivity and positive predictive value. RESULTS: Sixteen teams registered but only four provided manuscripts and pipeline(s) for a total of 10 methods. In addition, results using two thresholds and the Fuzzy Locally Adaptive Bayesian (FLAB) were generated. All competing methods except one performed with median accuracy above 0.8. The method with the highest score was the convolutional neural network-based segmentation, which significantly outperformed 9 out of 12 of the other methods, but not the improved K-Means, Gaussian Model Mixture and Fuzzy C-Means methods. CONCLUSION: The most rigorous comparative study of PET segmentation algorithms to date was carried out using a dataset that is the largest used in such studies so far. The hierarchy amongst the methods in terms of accuracy did not depend strongly on the subset of datasets or the metrics (or combination of metrics). All the methods submitted by the challengers except one demonstrated good performance with median accuracy scores above 0.8.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Bayes Theorem , Fuzzy Logic , Humans , Machine Learning , Neural Networks, Computer , Phantoms, Imaging , Predictive Value of Tests , Sensitivity and Specificity
4.
IEEE Trans Med Imaging ; 35(4): 967-77, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26625409

ABSTRACT

Real-time 3D Echocardiography (RT3DE) has been proven to be an accurate tool for left ventricular (LV) volume assessment. However, identification of the LV endocardium remains a challenging task, mainly because of the low tissue/blood contrast of the images combined with typical artifacts. Several semi and fully automatic algorithms have been proposed for segmenting the endocardium in RT3DE data in order to extract relevant clinical indices, but a systematic and fair comparison between such methods has so far been impossible due to the lack of a publicly available common database. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms developed to segment the LV border in RT3DE. A database consisting of 45 multivendor cardiac ultrasound recordings acquired at different centers with corresponding reference measurements from three experts are made available. The algorithms from nine research groups were quantitatively evaluated and compared using the proposed online platform. The results showed that the best methods produce promising results with respect to the experts' measurements for the extraction of clinical indices, and that they offer good segmentation precision in terms of mean distance error in the context of the experts' variability range. The platform remains open for new submissions.


Subject(s)
Algorithms , Echocardiography, Three-Dimensional/methods , Heart Ventricles/diagnostic imaging , Image Processing, Computer-Assisted/methods , Humans
5.
IEEE Trans Med Imaging ; 32(1): 110-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23014715

ABSTRACT

This paper presents the Virtual Imaging Platform (VIP), a platform accessible at http://vip.creatis.insa-lyon.fr to facilitate the sharing of object models and medical image simulators, and to provide access to distributed computing and storage resources. A complete overview is presented, describing the ontologies designed to share models in a common repository, the workflow template used to integrate simulators, and the tools and strategies used to exploit computing and storage resources. Simulation results obtained in four image modalities and with different models show that VIP is versatile and robust enough to support large simulations. The platform currently has 200 registered users who consumed 33 years of CPU time in 2011.


Subject(s)
Database Management Systems , Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Software , Computer Simulation , Databases, Factual , Humans , Medical Informatics Applications , Models, Biological , Reproducibility of Results
6.
J Med Eng ; 2013: 471682, 2013.
Article in English | MEDLINE | ID: mdl-27006915

ABSTRACT

An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today.

7.
Stud Health Technol Inform ; 159: 203-14, 2010.
Article in English | MEDLINE | ID: mdl-20543439

ABSTRACT

This paper studies the optimization of Mean-Shift (MS) image filtering scale parameters. A parameter sweep experiment representing 164 days of CPU is performed on the EGEE grid. The mathematical foundations of Mean-Shift and the grid environment used for the deployment are described in details. The experiments and results are then discussed highlighting the efficiency of gradient ascent algorithm for MS parameters optimization and a number of grid observations related to data transfers, reliability, task scheduling, CPU time and usability.


Subject(s)
Computer Communication Networks/organization & administration , Image Processing, Computer-Assisted/methods , Algorithms , Image Processing, Computer-Assisted/statistics & numerical data
8.
Stud Health Technol Inform ; 147: 31-40, 2009.
Article in English | MEDLINE | ID: mdl-19593042

ABSTRACT

Production exploitation of cardiac image analysis tools is hampered by the lack of proper IT infrastructure in health institutions, the non trivial integration of heterogeneous codes in coherent analysis procedures, and the need to achieve complete automation of these methods. HealthGrids are promising technologies to address these difficulties. This paper details how they can be complemented by high level problem solving environments such as workflow managers to improve the performance of applications both in terms of execution time and robustness of results. Two of the most important important cardiac image analysis tasks are considered, namely myocardium segmentation and motion estimation in a 4D sequence. Results are shown on the corresponding pipelines, using two different execution environments on the EGEE grid production infrastructure.


Subject(s)
Cardiovascular Diseases/diagnosis , Diagnostic Imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...