Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Vet Sci ; 11(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38922003

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most commonly used classes of drugs in both human and veterinary medicine. However, many clinical side effects have been observed, especially when treatment has been prolonged. While the anti-inflammatory efficacy and safety of repeated administration of firocoxib (Previcox®), which is a selective NSAID COX-2 inhibitor, has been evaluated for short-term use (one to fourteen days), its clinical relevance for longer-term use is not known. As a preliminary study, healthy, adult male and female horses (n = 7) were treated with firocoxib for 40 days concomitant with the collection of blood samples encompassing treatment to assess hematological and biochemical endpoints. Daily oral administration of firocoxib was performed with one 57 mg tablet/animal (0.11-0.14 mg/kg), which was crushed and mixed with feed. Blood samples were collected one day before treatment (D0 or basal sample), during (D10, D20, D30, and D40), and after treatment (D55 and D70). Results indicated some hematological and biochemical effects were significantly reduced (p < 0.05) towards the end of treatment on D40 relative to pre-treatment or baseline values on D0. Post-treatment, all values returned to pre-treatment values within 30 days without any apparent clinical adversities. In conclusion, while these preliminary results are favorable for prolonged use of firocoxib in horses, future studies are required to evaluate the efficacy of prolonged use accompanied with other clinically relevant endpoints in healthy as well as injured or diseased animals.

2.
Theriogenology ; 219: 39-48, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382216

ABSTRACT

The present study was designed to evaluate equine blastocyst re-expansion rate, quality, and sex following perforation of the blastocoel, collection of blastocoel fluid (BF), and PCR amplification of free DNA. Experiment 1 tested the feasibility of the BF sample collection with a hand-held, small-gauged needle (26g) and subsequent PCR amplification of the TSP-Y gene for males and AMEL-Y gene for males and AMEL-X gene for females. Experiment 2 tested the application of the technique. Equine embryos were collected via uterine flushes 8d after ovulation. Thereafter, embryos (n = 19) were initially assessed and transferred to a 50 µL droplet of holding medium in which the blastocoel was manually perforated as in Experiment 1. Within 1 min of detecting a diameter decrease or collapse, the entire volume of each droplet of medium was collected and stored at -20 °C until PCR. In Experiment 1, amplification of the TSP-Y gene was positive for males at 60% (9/15) and negative for females at 40% (6/15). In Experiment 2, a total of 42 embryos were randomly assigned to a collapsed embryo (CE) or intact embryo (IE) groups and stored at room temperature (RT, 25 °C) or cold temperature (CT, 5 °C) for 24h as follows: 1) CERT, n = 11; 2) CECT n = 11; 3) IERT, n = 10; and 4) IECT, n = 10. After 24h, embryo diameter and quality were reassessed. For all collapsed embryos (n = 19), blastocoel fluid was subjected to double PCR amplification of the TSPY gene with blood from adult male and female horses as controls. Positive gene amplification indicated 57.9% (11/19) of embryos were male and negative amplification indicated 31.6% (6/19) of embryos were female. Relative to the least diameter (0%) after perforation of collapsed embryos or fullest diameter (100%) of intact embryos at T0, percentage change in diameter and quality Grade 1 or 2 embryos after 24h of storage for all groups were, respectively: 31.2% and 54% for CERT group, 28.2% and 0% for CECT group, 25.9% and 100% for IERT group, 4.3% and 80% for IECT group, respectively. Thus, needle-induced leakage and collapse of the blastocoel at T0 resulted in a high rate of blastocyst re-expansion (69%) with many embryos (54%) achieving good quality at T24 with potential for transfer as either male or female embryos. For both collapsed and intact embryos, it was observed that storage for 24h at room temperature (25 °C) was associated with improved embryo growth and morphological quality compared to storage at cold temperature (5 °C).


Subject(s)
Blastocyst , Embryo, Mammalian , Female , Animals , Horses , Male , Temperature , Cold Temperature , Specimen Handling/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...