Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 193(3): 807-821, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33196971

ABSTRACT

Substantial progress has been made in ethanol fermentation technology under high gravity (HG) and very high gravity (VHG), which offer environmental and economic benefits. HG and VHG processes increase the productivity of ethanol, reduce distillation costs, and enable higher yields. The aim of the present study was to evaluate the use of sugarcane molasses as the medium component along with flocculating yeasts for fermentation in a fed-batch process employing this promising technology. We evaluated fed-batch fermentation, HG, and VHG involving a molasses-based medium with high concentrations of reducing sugars (209, 222, and 250 g/L). Fermentation of 222 g/L of total reducing sugars achieved 89.45% efficiency, with a final ethanol concentration of 104.4 g/L, whereas the highest productivity (2.98 g/(L.h)) was achieved with the fermentation of 209 g/L of total reducing sugars. The ethanol concentration achieved with the fermentation of 222 g/L of total reducing sugars was close to the value obtained for P'max (105.35 g/L). The kinetic model provided a good fit to the experimental data regarding the fermentation of 222 g/L. The results revealed that sugarcane molasses and flocculating yeasts can be efficiently used in HG fermentation to reduce the costs of the process and achieve high ethanol titers.


Subject(s)
Bioreactors , Hypergravity , Models, Biological , Molasses , Saccharomyces cerevisiae/growth & development , Saccharum/chemistry , Flocculation , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...