Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Plants (Basel) ; 12(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37896100

ABSTRACT

The known activities of cytokinins (CKs) are promoting shoot multiplication, root growth inhibition, and delaying senescence. 6-Benzylaminopurine (BAP) has been the most effective CK to induce shoot proliferation in cereal and grasses. Previously, we reported that in lemongrass (Cymbopogon citratus) micropropagation, BAP 10 µM induces high shoot proliferation, while the natural CK 6-(γ,γ-Dimethylallylamino)purine (2-iP) 10 µM shows less pronounced effects and developed rooting. To understand the molecular mechanisms involved, we perform a protein-protein interaction (PPI) network based on the genes of Brachypodium distachyon involved in shoot proliferation/repression, cell cycle, stem cell maintenance, auxin response factors, and CK signaling to analyze the molecular mechanisms in BAP versus 2-iP plants. A different pattern of gene expression was observed between BAP- versus 2-iP-treated plants. In shoots derived from BAP, we found upregulated genes that have already been demonstrated to be involved in de novo shoot proliferation development in several plant species; CK receptors (AHK3, ARR1), stem cell maintenance (STM, REV and CLV3), cell cycle regulation (CDKA-CYCD3 complex), as well as the auxin response factor (ARF5) and CK metabolism (CKX1). In contrast, in the 2-iP culture medium, there was an upregulation of genes involved in shoot repression (BRC1, MAX3), ARR4, a type A-response regulator (RR), and auxin metabolism (SHY2).

2.
Plant Sci ; 335: 111814, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562730

ABSTRACT

Papaya (Carica papaya L.) is an economically significant plant that produces fruit consumed worldwide due to its organoleptic characteristics. Since their commercial production, papaya fruits have faced several problems, such as pests, which have been partly resolved using transgenic varieties. Nevertheless, a principal challenge in this cultivation is the plant's sex determination. The sex issue in papaya is complex because papaya flowers can bear three sex forms: male, female, and hermaphrodite, which affects their fruit production, shape, and yield. Fruits from hermaphrodite plants are preferred more by consumers than female ones, and male plants rarely produce fruits without commercial value. Chromosomes are responsible for sex determination in papaya, denoted as XY for male, XX for female, and XYh for hermaphrodite. However, genes related to sex have been reported but are not conclusive. Factors such as the environment, hormones, and genetic and epigenetic background can also affect sex expression. Therefore, in this review, we will discuss recent research on the sex of papaya, from reported genes to date, their biology, and sexing approaches using molecular markers and their advantages.


Subject(s)
Carica , Carica/genetics , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL