Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Dent Mater ; 37(7): 1121-1133, 2021 07.
Article in English | MEDLINE | ID: mdl-33846018

ABSTRACT

OBJECTIVE: The project aims to evaluate whether inhalation of particles released upon grinding of dental composites may pose a health hazard to dentists. The main objective of the study was to characterize the dust from polymer-based dental composites ground with different grain sized burs and investigate particle uptake and the potential cytotoxic effects in human bronchial cells. METHODS: Polymerized blocks of two dental composites, Filtek™ Z250 and Filtek™ Z500 from 3M™ ESPE, were ground with super coarse (black) and fine (red) burs inside a glass chamber. Ultrafine airborne dust concentration and particle size distribution was measured real-time during grinding with a scanning mobility particle sizer (SMPS). Filter-collected airborne particles were characterized with dynamic light scattering (DLS) and scanning electron microscopy (SEM). Human bronchial epithelial cells (HBEC-3KT) were exposed to the dusts in dose-effect experiments. Toxicity was measured with lactate dehydrogenase (LDH) assay and cell counting kit-8 (CCK8). Cellular uptake was observed with transmission electron microscopy (TEM). RESULTS: Airborne ultrafine particles showed that most particles were in the size range 15-35 nm (SMPS). SEM analysis proved that more than 80% of the particles have a minimum Feret diameter less than 1 µm. In solution (DLS), the particles have larger diameters and tend to agglomerate. Cell toxicity (LDH, CCK8) is shown after 48 h and 72 h exposure times and at the highest doses. TEM showed presence of the particles within the cell cytoplasm. SIGNIFICANCE: Prolonged and frequent exposure through inhalation may have negative health implications for dentists.


Subject(s)
Dust , Resins, Synthetic , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size
3.
Neuroscience ; 129(4): 935-45, 2004.
Article in English | MEDLINE | ID: mdl-15561409

ABSTRACT

Aquaporin-4 (AQP4) is the major water channel expressed in brain perivascular astrocyte processes. Although the role of AQP4 in brain edema has been extensively investigated, little information exists regarding its functional role at the blood-brain barrier (BBB). The purpose of this work is to integrate previous and recent data regarding AQP4 expression during BBB formation and depending on BBB integrity, using several experimental models. Results from studies on the chick optic tectum, a well-established model of BBB development, and the effect of lipopolysaccharide on the BBB integrity and on perivascular AQP4 expression have been analyzed and discussed. Moreover, data on the BBB structure and AQP4 expression in murine models of Duchenne muscular dystrophy are reviewed. In particular, published results obtained from mdx(3cv) mice have been analyzed together with new data obtained from mdx mice in which all the dystrophin isoforms including DP71 are strongly reduced. Finally, the role of the endothelial component on AQP4 cellular expression and distribution has been investigated using rat primary astrocytes and brain capillary endothelial cell co-cultures as an in vitro model of BBB.


Subject(s)
Aquaporins/physiology , Blood-Brain Barrier/growth & development , Brain/growth & development , Animals , Aquaporin 4 , Astrocytes/cytology , Astrocytes/physiology , Blood-Brain Barrier/cytology , Blood-Brain Barrier/drug effects , Brain/blood supply , Brain/cytology , Brain Edema/physiopathology , Cells, Cultured , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/physiology , Muscular Dystrophy, Duchenne/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...