Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6267, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39048541

ABSTRACT

Legged robots are well-suited for deployment in unstructured environments but require a unique control scheme specific for their design. As controllers optimised in simulation do not transfer well to the real world (the infamous sim-to-real gap), methods enabling quick learning in the real world, without any assumptions on the specific robot model and its dynamics, are necessary. In this paper, we present a generic method based on Central Pattern Generators, that enables the acquisition of basic locomotion skills in parallel, through very few trials. The novelty of our approach, underpinned by a mathematical analysis of the controller model, is to search for good initial states, instead of optimising connection weights. Empirical validation in six different robot morphologies demonstrates that our method enables robots to learn primary locomotion skills in less than 15 minutes in the real world. In the end, we showcase our skills in a targeted locomotion experiment.

2.
Front Robot AI ; 7: 12, 2020.
Article in English | MEDLINE | ID: mdl-33501181

ABSTRACT

While direct local communication is very important for the organization of robot swarms, so far it has mostly been used for relatively simple tasks such as signaling robots preferences or states. Inspired by the emergence of meaning found in natural languages, more complex communication skills could allow robot swarms to tackle novel situations in ways that may not be a priori obvious to the experimenter. This would pave the way for the design of robot swarms with higher autonomy and adaptivity. The state of the art regarding the emergence of communication for robot swarms has mostly focused on offline evolutionary approaches, which showed that signaling and communication can emerge spontaneously even when not explicitly promoted. However, these approaches do not lead to complex, language-like communication skills, and signals are tightly linked to environmental and/or sensory-motor states that are specific to the task for which communication was evolved. To move beyond current practice, we advocate an approach to emergent communication in robot swarms based on language games. Thanks to language games, previous studies showed that cultural self-organization-rather than biological evolution-can be responsible for the complexity and expressive power of language. We suggest that swarm robotics can be an ideal test-bed to advance research on the emergence of language-like communication. The latter can be key to provide robot swarms with additional skills to support self-organization and adaptivity, enabling the design of more complex collective behaviors.

SELECTION OF CITATIONS
SEARCH DETAIL
...