Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
ACS Synth Biol ; 13(3): 951-957, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38335132

ABSTRACT

Lactic acid bacteria (LAB) are important for many biotechnological applications such as bioproduction and engineered probiotics for therapy. Inducible promoters are key gene expression control elements, yet those available in LAB are mainly based on bacteriocin systems and have many drawbacks, including large gene clusters, costly inducer peptides, and little portability to in vivo settings. Using Lactobacillus gasseri, a model commensal bacteria from the human gut, we report the engineering of synthetic LactoSpanks promoters (Pls), a collection of variable strength inducible promoters controlled by the LacI repressor from E. coli and induced by isopropyl ß-d-1-thiogalactopyranoside (IPTG). We first show that the Phyper-spank promoter from Bacillus subtilis is functional in L. gasseri, albeit with substantial leakage. We then construct and screen a semirational library of Phyper-spank variants to select a set of four IPTG-inducible promoters that span a range of expression levels and exhibit reduced leakages and operational dynamic ranges (from ca. 9 to 28 fold-change). With their low genetic footprint and simplicity of use, LactoSpanks will support many applications in L. gasseri, and potentially other lactic acid and Gram-positive bacteria.


Subject(s)
Lactobacillales , Lactobacillus gasseri , Humans , Lactobacillus gasseri/genetics , Isopropyl Thiogalactoside/pharmacology , Lactobacillales/genetics , Escherichia coli/metabolism , Promoter Regions, Genetic/genetics
3.
ISME Commun ; 3(1): 40, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37117399

ABSTRACT

Mosquitoes represent the most important pathogen vectors and are responsible for the spread of a wide variety of poorly treatable diseases. Wolbachia are obligate intracellular bacteria that are widely distributed among arthropods and collectively represents one of the most promising solutions for vector control. In particular, Wolbachia has been shown to limit the transmission of pathogens, and to dramatically affect the reproductive behavior of their host through its phage WO. While much research has focused on deciphering and exploring the biocontrol applications of these WO-related phenotypes, the extent and potential impact of the Wolbachia mobilome remain poorly appreciated. Notably, several Wolbachia plasmids, carrying WO-like genes and Insertion Sequences (IS), thus possibly interrelated to other genetic units of the endosymbiont, have been recently discovered. Here we investigated the diversity and biogeography of the first described plasmid of Wolbachia in Culex pipiens (pWCP) in several islands and continental countries around the world-including Cambodia, Guadeloupe, Martinique, Thailand, and Mexico-together with mosquito strains from colonies that evolved for 2 to 30 years in the laboratory. We used PCR and qPCR to determine the presence and copy number of pWCP in individual mosquitoes, and highly accurate Sanger sequencing to evaluate potential variations. Together with earlier observation, our results show that pWCP is omnipresent and strikingly conserved among Wolbachia populations within mosquitoes from distant geographies and environmental conditions. These data suggest a critical role for the plasmid in Wolbachia ecology and evolution, and the potential of a great tool for further genetic dissection and possible manipulation of this endosymbiont.

4.
PLoS One ; 18(2): e0280935, 2023.
Article in English | MEDLINE | ID: mdl-36800374

ABSTRACT

Engineered bacteria are promising candidates for in situ detection and treatment of diseases. The female uro-genital tract presents several pathologies, such as sexually transmitted diseases or genital cancer, that could benefit from such technology. While bacteria from the gut microbiome are increasingly engineered, the use of chassis isolated from the female uro-genital resident flora has been limited. A major hurdle to implement the experimental throughput required for efficient engineering in these non-model bacteria is their low transformability. Here we report an optimized electrotransformation protocol for Lactobacillus jensenii, one the most widespread species across vaginal microflora. Starting from classical conditions, we optimized buffers, electric field parameters, cuvette type and DNA quantity to achieve an 80-fold improvement in transformation efficiency, with up to 3.5·103 CFUs/µg of DNA in L. jensenii ATCC 25258. We also identify several plasmids that are maintained and support reporter gene expression in L. jensenii. Finally, we demonstrate that our protocol provides increased transformability in three independent clinical isolates of L. jensenii. This work will facilitate the genetic engineering of L. jensenii and enable its use for addressing challenges in gynecological healthcare.


Subject(s)
Lactobacillus , Vagina , Female , Humans , Vagina/microbiology , Bacteria/genetics , Plasmids/genetics
5.
Nat Commun ; 13(1): 7755, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36517468

ABSTRACT

Synthetic biology often involves engineering microbial strains to express high-value proteins. Thanks to progress in rapid DNA synthesis and sequencing, deep learning has emerged as a promising approach to build sequence-to-expression models for strain optimization. But such models need large and costly training data that create steep entry barriers for many laboratories. Here we study the relation between accuracy and data efficiency in an atlas of machine learning models trained on datasets of varied size and sequence diversity. We show that deep learning can achieve good prediction accuracy with much smaller datasets than previously thought. We demonstrate that controlled sequence diversity leads to substantial gains in data efficiency and employed Explainable AI to show that convolutional neural networks can finely discriminate between input DNA sequences. Our results provide guidelines for designing genotype-phenotype screens that balance cost and quality of training data, thus helping promote the wider adoption of deep learning in the biotechnology sector.


Subject(s)
Deep Learning , Neural Networks, Computer , Machine Learning , Proteins
6.
Nat Commun ; 12(1): 5216, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471137

ABSTRACT

Bacterial biosensors, or bactosensors, are promising agents for medical and environmental diagnostics. However, the lack of scalable frameworks to systematically program ligand detection limits their applications. Here we show how novel, clinically relevant sensing modalities can be introduced into bactosensors in a modular fashion. To do so, we have leveraged a synthetic receptor platform, termed EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) which supports the modular assembly of sensing modules onto a high-performance, generic signaling scaffold controlling gene expression in E. coli. We apply EMeRALD to detect bile salts, a biomarker of liver dysfunction, by repurposing sensing modules from enteropathogenic Vibrio species. We improve the sensitivity and lower the limit-of-detection of the sensing module by directed evolution. We then engineer a colorimetric bactosensor detecting pathological bile salt levels in serum from patients having undergone liver transplant, providing an output detectable by the naked-eye. The EMeRALD technology enables functional exploration of natural sensing modules and rapid engineering of synthetic receptors for diagnostics, environmental monitoring, and control of therapeutic microbes.


Subject(s)
Bacteria/metabolism , Biomarkers/metabolism , Biosensing Techniques , Carrier Proteins/metabolism , Pathology, Molecular/methods , Bacteria/genetics , Bile Acids and Salts/blood , Biosensing Techniques/methods , Carrier Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Humans , Liver Transplantation , Metabolic Engineering/methods , Sensitivity and Specificity , Sequence Alignment , Vibrio , Vibrio Infections/diagnosis
7.
J Virol ; 95(17): e0052321, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34132571

ABSTRACT

Despite tight genetic compression, viral genomes are often organized into functional gene clusters, a modular structure that might favor their evolvability. This has greatly facilitated biotechnological developments such as the recombinant adeno-associated virus (AAV) systems for gene therapy. Following this lead, we endeavored to engineer the related insect parvovirus Junonia coenia densovirus (JcDV) to create addressable vectors for insect pest biocontrol. To enable safer manipulation of capsid mutants, we translocated the nonstructural (ns) gene cluster outside the viral genome. To our dismay, this yielded a virtually nonreplicable clone. We linked the replication defect to an unexpected modularity breach, as ns translocation truncated the overlapping 3' untranslated region (UTR) of the capsid transcript (vp). We found that the native vp 3' UTR is necessary for high-level VP production but that decreased expression does not adversely impact the expression of NS proteins, which are known replication effectors. As nonsense vp mutations recapitulate the replication defect, VP proteins appear to be directly implicated in the replication process. Our findings suggest intricate replication-encapsidation couplings that favor the maintenance of genetic integrity. We discuss possible connections with an intriguing cis-packaging phenomenon previously observed in parvoviruses whereby capsids preferentially package the genome from which they were expressed. IMPORTANCE Densoviruses could be used as biological control agents to manage insect pests. Such applications require an in-depth biological understanding and associated molecular tools. However, the genomes of these viruses remain difficult to manipulate due to poorly tractable secondary structures at their extremities. We devised a construction strategy that enables precise and efficient molecular modifications. Using this approach, we endeavored to create a split clone of Junonia coenia densovirus (JcDV) that can be used to safely study the impact of capsid mutations on host specificity. Our original construct proved to be nonfunctional. Fixing this defect led us to uncover that capsid proteins and their correct expression are essential for continued rolling-hairpin replication. This points to an intriguing link between replication and packaging, which might be shared with related viruses. This serendipitous discovery illustrates the power of synthetic biology approaches to advance our knowledge of biological systems.


Subject(s)
Capsid Proteins/metabolism , Densovirus/physiology , Genome, Viral , Parvoviridae Infections/virology , Spodoptera/virology , Viral Nonstructural Proteins/metabolism , Virus Replication , 3' Untranslated Regions/genetics , Animals , Capsid Proteins/genetics , Genetic Vectors , Pest Control, Biological , Viral Nonstructural Proteins/genetics
8.
Nat Biotechnol ; 36(10): 1005-1015, 2018 11.
Article in English | MEDLINE | ID: mdl-30247489

ABSTRACT

Comparative analyses of natural and mutated sequences have been used to probe mechanisms of gene expression, but small sample sizes may produce biased outcomes. We applied an unbiased design-of-experiments approach to disentangle factors suspected to affect translation efficiency in E. coli. We precisely designed 244,000 DNA sequences implementing 56 replicates of a full factorial design to evaluate nucleotide, secondary structure, codon and amino acid properties in combination. For each sequence, we measured reporter transcript abundance and decay, polysome profiles, protein production and growth rates. Associations between designed sequences properties and these consequent phenotypes were dominated by secondary structures and their interactions within transcripts. We confirmed that transcript structure generally limits translation initiation and demonstrated its physiological cost using an epigenetic assay. Codon composition has a sizable impact on translatability, but only in comparatively rare elongation-limited transcripts. We propose a set of design principles to improve translation efficiency that would benefit from more accurate prediction of secondary structures in vivo.


Subject(s)
DNA, Bacterial/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/physiology , Protein Biosynthesis , Escherichia coli Proteins/genetics , RNA, Bacterial/genetics
9.
Biotechnol Bioeng ; 115(1): 184-191, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28898391

ABSTRACT

Synthetic DNA design needs to harness the many information layers embedded in a DNA string. We previously developed the Evolutionary Landscape Painter (ELP), an algorithm that exploits the degeneracy of the code to increase protein evolvability. Here, we have used ELP to recode the integron integrase gene (intI1) in two alternative alleles. Although synonymous, both alleles yielded less IntI1 protein and were less active in recombination assays than intI1. We spliced the three alleles and mapped the activity decrease to the beginning of alternative sequences. Mfold predicted the presence of more stable secondary structures in the alternative genes. Using synonymous mutations, we decreased their stability and recovered full activity. Following a design-build-test approach, we have now updated ELP to consider such structures and provide streamlined alternative sequences. Our results support the possibility of modulating gene activity through the ad hoc design of 5' secondary structures in synthetic genes.


Subject(s)
Directed Molecular Evolution/methods , Integrases/biosynthesis , Integrases/genetics , Protein Biosynthesis , Integrases/chemistry , Integrons/genetics , Models, Molecular , Protein Conformation
11.
PLoS One ; 9(3): e91194, 2014.
Article in English | MEDLINE | ID: mdl-24614503

ABSTRACT

Chromosome 2 of Vibrio cholerae carries a chromosomal superintegron, composed of an integrase, a cassette integration site (attI) and an array of mostly promoterless gene cassettes. We determined the precise location of the promoter, Pc, which drives the transcription of the first cassettes of the V. cholerae superintegron. We found that cassette mRNA starts 65 bp upstream of the attI site, so that the inversely oriented promoters Pc and Pint (integrase promoter) partly overlap, allowing for their potential co-regulation. Pint was previously shown to be induced during the SOS response and is further controlled by the catabolite repression cAMP-CRP complex. We found that cassette expression from Pc was also controlled by the cAMP-CRP complex, but is not part of the SOS regulon. Pint and Pc promoters were both found to be induced in rich medium, at high temperature, high salinity and at the end of exponential growth phase, although at very different levels and independently of sigma factor RpoS. All these results show that expression from the integrase and cassette promoters can take place at the same time, thus leading to coordinated excisions and integrations within the superintegron and potentially coupling cassette shuffling to immediate selective advantage.


Subject(s)
Gene Expression Regulation, Bacterial , Integrases/metabolism , Integrons/genetics , Promoter Regions, Genetic , Vibrio cholerae/genetics , Bacterial Proteins/metabolism , Base Sequence , Catabolite Repression/drug effects , Catabolite Repression/genetics , Culture Media , Cyclic AMP/metabolism , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial , Molecular Sequence Data , SOS Response, Genetics/drug effects , SOS Response, Genetics/genetics , Sigma Factor/metabolism , Sodium Chloride/pharmacology , Temperature , Transcription Initiation Site , Vibrio cholerae/drug effects , Vibrio cholerae/growth & development
12.
Bioinformatics ; 30(8): 1087-1094, 2014 04 15.
Article in English | MEDLINE | ID: mdl-24398007

ABSTRACT

MOTIVATION: Current advances in DNA synthesis, cloning and sequencing technologies afford high-throughput implementation of artificial sequences into living cells. However, flexible computational tools for multi-objective sequence design are lacking, limiting the potential of these technologies. RESULTS: We developed DNA-Tailor (D-Tailor), a fully extendable software framework, for property-based design of synthetic DNA sequences. D-Tailor permits the seamless integration of multiple sequence analysis tools into a generic Monte Carlo simulation that evolves sequences toward any combination of rationally defined properties. As proof of principle, we show that D-Tailor is capable of designing sequence libraries comprising all possible combinations among three different sequence properties influencing translation efficiency in Escherichia coli The capacity to design artificial sequences that systematically sample any given parameter space should support the implementation of more rigorous experimental designs. AVAILABILITY: Source code is available for download at https://sourceforge.net/projects/dtailor/ CONTACT: aparkin@lbl.gov or cambray.guillaume@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online (D-Tailor Tutorial).


Subject(s)
Sequence Analysis, DNA/methods , Software , Computational Biology , DNA , Escherichia coli/genetics , Monte Carlo Method
13.
Proc Natl Acad Sci U S A ; 110(34): 14024-9, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23924614

ABSTRACT

The inability to predict heterologous gene expression levels precisely hinders our ability to engineer biological systems. Using well-characterized regulatory elements offers a potential solution only if such elements behave predictably when combined. We synthesized 12,563 combinations of common promoters and ribosome binding sites and simultaneously measured DNA, RNA, and protein levels from the entire library. Using a simple model, we found that RNA and protein expression were within twofold of expected levels 80% and 64% of the time, respectively. The large dataset allowed quantitation of global effects, such as translation rate on mRNA stability and mRNA secondary structure on translation rate. However, the worst 5% of constructs deviated from prediction by 13-fold on average, which could hinder large-scale genetic engineering projects. The ease and scale this of approach indicates that rather than relying on prediction or standardization, we can screen synthetic libraries for desired behavior.


Subject(s)
Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/genetics , Gene Library , Genetic Engineering/methods , Models, Genetic , RNA, Messenger/genetics , Systems Biology/methods , Cloning, Molecular , DNA Primers/genetics , Escherichia coli/genetics , Flow Cytometry , High-Throughput Nucleotide Sequencing , Promoter Regions, Genetic/genetics , Regulatory Elements, Transcriptional/genetics , Reverse Transcriptase Polymerase Chain Reaction , Ribosomes/genetics
14.
ACS Synth Biol ; 2(3): 150-9, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23656438

ABSTRACT

Introduction of the electron transfer complex MtrCAB from Shewanella oneidensis MR-1 into a heterologous host provides a modular and molecularly defined route for electrons to be transferred to an extracellular inorganic solid. However, an Escherichia coli strain expressing this pathway displayed limited control of MtrCAB expression and impaired cell growth. To overcome these limitations and to improve heterologous extracellular electron transfer, we used an E. coli host with a more tunable induction system and a panel of constitutive promoters to generate a library of strains that separately transcribe the mtr and cytochrome c maturation (ccm) operons over 3 orders of magnitude. From this library, we identified strains that show 2.2 times higher levels of MtrC and MtrA and that have improved cell growth. We find that a ~300-fold decrease in the efficiency of MtrC and MtrA synthesis with increasing mtr promoter activity critically limits the maximum expression level of MtrC and MtrA. We also tested the extracellular electron transfer capabilities of a subset of the strains using a three-electrode microbial electrochemical system. Interestingly, the strain with improved cell growth and fewer morphological changes generated the largest maximal current per cfu, rather than the strain with more MtrC and MtrA. This strain also showed ~30-fold greater maximal current per cfu than its ccm-only control strain. Thus, the conditions for optimal MtrCAB expression and anode reduction are distinct, and minimal perturbations to cell morphology are correlated with improved extracellular electron transfer in E. coli.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytochromes c/genetics , Cytochromes c/metabolism , Electron Transport , Electrons , Operon , Promoter Regions, Genetic , Transcription, Genetic
15.
Nat Methods ; 10(4): 354-60, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23474465

ABSTRACT

An inability to reliably predict quantitative behaviors for novel combinations of genetic elements limits the rational engineering of biological systems. We developed an expression cassette architecture for genetic elements controlling transcription and translation initiation in Escherichia coli: transcription elements encode a common mRNA start, and translation elements use an overlapping genetic motif found in many natural systems. We engineered libraries of constitutive and repressor-regulated promoters along with translation initiation elements following these definitions. We measured activity distributions for each library and selected elements that collectively resulted in expression across a 1,000-fold observed dynamic range. We studied all combinations of curated elements, demonstrating that arbitrary genes are reliably expressed to within twofold relative target expression windows with ∼93% reliability. We expect the genetic element definitions validated here can be collectively expanded to create collections of public-domain standard biological parts that support reliable forward engineering of gene expression at genome scales.


Subject(s)
Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Prokaryotic Initiation Factors/metabolism , Transcription, Genetic , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/physiology , Gene Library , Genetic Engineering , Genome, Bacterial , Prokaryotic Initiation Factors/genetics , Promoter Regions, Genetic/genetics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Nat Methods ; 10(4): 347-53, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23474467

ABSTRACT

The practice of engineering biology now depends on the ad hoc reuse of genetic elements whose precise activities vary across changing contexts. Methods are lacking for researchers to affordably coordinate the quantification and analysis of part performance across varied environments, as needed to identify, evaluate and improve problematic part types. We developed an easy-to-use analysis of variance (ANOVA) framework for quantifying the performance of genetic elements. For proof of concept, we assembled and analyzed combinations of prokaryotic transcription and translation initiation elements in Escherichia coli. We determined how estimation of part activity relates to the number of unique element combinations tested, and we show how to estimate expected ensemble-wide part activity from just one or two measurements. We propose a new statistic, biomolecular part 'quality', for tracking quantitative variation in part performance across changing contexts.


Subject(s)
Bioengineering/methods , Escherichia coli/metabolism , Peptide Initiation Factors/metabolism , Animals , Bacterial Proteins , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/physiology , Gene Library , Peptide Chain Initiation, Translational , Prokaryotic Initiation Factors/metabolism , Transcription, Genetic
17.
Nucleic Acids Res ; 41(9): 5139-48, 2013 May.
Article in English | MEDLINE | ID: mdl-23511967

ABSTRACT

The reliable forward engineering of genetic systems remains limited by the ad hoc reuse of many types of basic genetic elements. Although a few intrinsic prokaryotic transcription terminators are used routinely, termination efficiencies have not been studied systematically. Here, we developed and validated a genetic architecture that enables reliable measurement of termination efficiencies. We then assembled a collection of 61 natural and synthetic terminators that collectively encode termination efficiencies across an ∼800-fold dynamic range within Escherichia coli. We simulated co-transcriptional RNA folding dynamics to identify competing secondary structures that might interfere with terminator folding kinetics or impact termination activity. We found that structures extending beyond the core terminator stem are likely to increase terminator activity. By excluding terminators encoding such context-confounding elements, we were able to develop a linear sequence-function model that can be used to estimate termination efficiencies (r = 0.9, n = 31) better than models trained on all terminators (r = 0.67, n = 54). The resulting systematically measured collection of terminators should improve the engineering of synthetic genetic systems and also advance quantitative modeling of transcription termination.


Subject(s)
Models, Genetic , Terminator Regions, Genetic , Transcription Termination, Genetic , Escherichia coli/genetics , RNA Folding
18.
Curr Opin Microbiol ; 14(5): 624-30, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21865081

ABSTRACT

The advent of genetic engineering-the ability to edit and insert DNA into living organisms-in the latter half of the 20th century created visions of a new era of synthetic biology, where novel biological functions could be designed and implemented for useful purposes. We are witnessing an exciting revolution of scale, wherein technical progresses allow for the manipulation of genetic material at the whole genome level. This will enable the manufacture of increasingly complex genetic designs to solve pressing challenges in health, energy and the environment-if and when such designs can be specified. We argue that the organized development of key common application organisms, engineered for engineerability, and attendant libraries of parts, pathways and standardized manufacturing are necessary for this genome-scale technology to realize its promise.


Subject(s)
Bacteria/genetics , Genetic Engineering/methods , Genome, Bacterial , Bacteria/growth & development , Bacteria/metabolism , Biotechnology/methods , Organisms, Genetically Modified , Technology, Pharmaceutical/methods
19.
Mob DNA ; 2(1): 6, 2011 Apr 30.
Article in English | MEDLINE | ID: mdl-21529368

ABSTRACT

BACKGROUND: Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. RESULTS: Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. CONCLUSIONS: Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.

20.
Annu Rev Genet ; 44: 141-66, 2010.
Article in English | MEDLINE | ID: mdl-20707672

ABSTRACT

Integrons are genetic elements able to acquire and rearrange open reading frames (ORFs) embedded in gene cassette units and convert them to functional genes by ensuring their correct expression. They were originally identified as a mechanism used by Gram-negative bacteria to collect antibiotic resistance genes and express multiple resistance phenotypes in synergy with transposons. More recently, their role has been broadened with the discovery of chromosomal integron (CI) structures in the genomes of hundreds of bacterial species. This review focuses on the resources carried in these elements, on their unique recombination mechanisms, and on the different mechanisms controlling the cassette dynamics. We discuss the role of the toxin/antitoxin (TA) cassettes for the stabilization of the large cassette arrays carried in the larger CIs, known as superintegrons. Finally, we explore the central role played by single-stranded DNA in the integron cassette dynamics in light of the recent discovery that the integron integrase expression is controlled by the SOS response.


Subject(s)
Bacteria/genetics , Integrons , Antitoxins/genetics , Bacterial Toxins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...