Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 25(3): 991-1021, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243137

ABSTRACT

Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.


Subject(s)
Glutamine , Monocarboxylic Acid Transporters , Rats , Animals , Glutamine/metabolism , Monocarboxylic Acid Transporters/metabolism , Neurons/metabolism , Glutamic Acid/metabolism , Glucose/metabolism , Fatty Acids/metabolism
2.
Cells ; 12(17)2023 08 30.
Article in English | MEDLINE | ID: mdl-37681912

ABSTRACT

Ataxia-Telangiectasia Mutated (ATM) is a serine/threonine protein kinase principally known to orchestrate DNA repair processes upon DNA double-strand breaks (DSBs). Mutations in the Atm gene lead to Ataxia-Telangiectasia (AT), a recessive disorder characterized by ataxic movements consequent to cerebellar atrophy or dysfunction, along with immune alterations, genomic instability, and predisposition to cancer. AT patients show variable phenotypes ranging from neurologic abnormalities and cognitive impairments to more recently described neuropsychiatric features pointing to symptoms hardly ascribable to the canonical functions of ATM in DNA damage response (DDR). Indeed, evidence suggests that cognitive abilities rely on the proper functioning of DSB machinery and specific synaptic changes in central neurons of ATM-deficient mice unveiled unexpected roles of ATM at the synapse. Thus, in the present review, upon a brief recall of DNA damage responses, we focus our attention on the role of ATM in neuronal physiology and pathology and we discuss recent findings showing structural and functional changes in hippocampal and cortical synapses of AT mouse models. Collectively, a deeper knowledge of ATM-dependent mechanisms in neurons is necessary not only for a better comprehension of AT neurological phenotypes, but also for a higher understanding of the pathological mechanisms in neurodevelopmental and degenerative disorders involving ATM dysfunctions.


Subject(s)
Ataxia Telangiectasia , Neurodegenerative Diseases , Animals , Mice , Ataxia Telangiectasia/genetics , DNA Repair , Interneurons , Neurons , Humans
3.
Cells ; 11(15)2022 07 23.
Article in English | MEDLINE | ID: mdl-35892573

ABSTRACT

Arthritides are a highly heterogeneous group of disorders that include two major clinical entities, localized joint disorders such as osteoarthritis (OA) and systemic autoimmune-driven diseases such as rheumatoid arthritis (RA). Arthritides are characterized by chronic debilitating musculoskeletal conditions and systemic chronic inflammation. Poor mental health is also one of the most common comorbidities of arthritides. Depressive symptoms which are most prevalent, negatively impact patient global assessment diminishing the probability of achieving the target of clinical remission. Here, we investigated new insights into mechanisms that link different joint disorders to poor mental health, and to this issue, we explored the action of the synovial fluid-derived extracellular vesicles (EVs) on neuronal function. Our data show that the exposure of neurons to different concentrations of EVs derived from both RA and OA synovial fluids (RA-EVs and OA-EVs) leads to increased excitatory synaptic transmission but acts on specific modifications on excitatory or inhibitory synapses, as evidenced by electrophysiological and confocal experiments carried out in hippocampal cultures. The treatment of neurons with EVs membrane is also responsible for generating similar effects to those found with intact EVs suggesting that changes in neuronal ability arise upon EVs membrane molecules' interactions with neurons. In humans with arthritides, we found that nearly half of patients (37.5%) showed clinically significant psychiatric symptoms (CGIs score ≥ 3), and at least mild anxiety (HAM-A ≥ 7) or depression (MADRS and HAM-D ≥ 7); interestingly, these individuals revealed an increased concentration of synovial EVs. In conclusion, our data showing opposite changes at the excitatory and inhibitory levels in neurons treated with OA- and RA-EVs, lay the scientific basis for personalized medicine in OA and RA patients, and identify EVs as new potential actionable biomarkers in patients with OA/RA with poor mental health.


Subject(s)
Arthritis, Rheumatoid , Extracellular Vesicles , Osteoarthritis , Arthritis, Rheumatoid/diagnosis , Hippocampus , Humans , Mood Disorders , Synovial Fluid
4.
Cell Death Dis ; 13(7): 616, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842432

ABSTRACT

Interest in the function of ataxia-telangiectasia-mutated protein (ATM) is extensively growing as evidenced by preclinical studies that continuously link ATM with new intracellular pathways. Here, we exploited Atm+/- and Atm-/- mice and demonstrate that cognitive defects are rescued by the delivery of the antidepressant Fluoxetine (Fluox). Fluox increases levels of the chloride intruder NKCC1 exclusively at hippocampal level suggesting an ATM context-specificity. A deeper investigation of synaptic composition unveils increased Gluk-1 and Gluk-5 subunit-containing kainate receptors (KARs) levels in the hippocampus, but not in the cortex, of Atm+/- and Atm-/- mice. Analysis of postsynaptic fractions and confocal studies indicates that KARs are presynaptic while in vitro and ex vivo electrophysiology that are fully active. These changes are (i) linked to KCC2 activity, as the KCC2 blockade in Atm+/- developing neurons results in reduced KARs levels and (ii) developmental regulated. Indeed, the pharmacological inhibition of ATM kinase in adults produces different changes as identified by RNA-seq investigation. Our data display how ATM affects both inhibitory and excitatory neurotransmission, extending its role to a variety of neurological and psychiatric disorders.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Hippocampus , Symporters , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Hippocampus/metabolism , Humans , Mice , Neurons/metabolism , Receptors, Kainic Acid , Symporters/genetics , Symporters/metabolism , Synaptic Transmission/physiology
5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613509

ABSTRACT

CDKL5 deficiency disorder (CDD) is an X-linked neurodevelopmental disorder characterised by early-onset drug-resistant epilepsy and impaired cognitive and motor skills. CDD is caused by mutations in cyclin-dependent kinase-like 5 (CDKL5), which plays a well-known role in regulating excitatory neurotransmission, while its effect on neuronal inhibition has been poorly investigated. We explored the potential role of CDKL5 in the inhibitory compartment in Cdkl5-KO male mice and primary hippocampal neurons and found that CDKL5 interacts with gephyrin and collybistin, two crucial organisers of the inhibitory postsynaptic sites. Through molecular and electrophysiological approaches, we demonstrated that CDKL5 loss causes a reduced number of gephyrin puncta and surface exposed γ2 subunit-containing GABAA receptors, impacting the frequency of miniature inhibitory postsynaptic currents, which we ascribe to a postsynaptic function of CDKL5. In line with previous data showing that CDKL5 loss impacts microtubule (MT) dynamics, we showed that treatment with pregnenolone-methyl-ether (PME), which promotes MT dynamics, rescues the above defects. The impact of CDKL5 deficiency on inhibitory neurotransmission might explain the presence of drug-resistant epilepsy and cognitive defects in CDD patients. Moreover, our results may pave the way for drug-based therapies that could bypass the need for CDKL5 and provide effective therapeutic strategies for CDD patients.


Subject(s)
Neurosteroids , Spasms, Infantile , Male , Mice , Animals , Neurosteroids/therapeutic use , Pregnenolone/pharmacology , Spasms, Infantile/genetics , Ethers , Mice, Knockout , Protein Serine-Threonine Kinases/genetics
6.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33373327

ABSTRACT

Impairment of the GABAergic system has been reported in epilepsy, autism, attention deficit hyperactivity disorder, and schizophrenia. We recently demonstrated that ataxia telangiectasia mutated (ATM) directly shapes the development of the GABAergic system. Here, we show for the first time to our knowledge how the abnormal expression of ATM affects the pathological condition of autism. We exploited 2 different animal models of autism, the methyl CpG binding protein 2-null (Mecp2y/-) mouse model of Rett syndrome and mice prenatally exposed to valproic acid, and found increased ATM levels. Accordingly, treatment with the specific ATM kinase inhibitor KU55933 (KU) normalized molecular, functional, and behavioral defects in these mouse models, such as (a) delayed GABAergic development, (b) hippocampal hyperexcitability, (c) low cognitive performances, and (d) social impairments. Mechanistically, we demonstrate that KU administration to WT hippocampal neurons leads to (a) higher early growth response 4 activity on Kcc2b promoter, (b) increased expression of Mecp2, and (c) potentiated GABA transmission. These results provide evidence and molecular substrates for the pharmacological development of ATM inhibition in autism spectrum disorders.


Subject(s)
Autism Spectrum Disorder/drug therapy , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Behavior, Animal/drug effects , Behavior, Animal/physiology , DNA Repair , Disease Models, Animal , Female , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Morpholines/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects , Protein Kinase Inhibitors/pharmacology , Pyrones/pharmacology , Rett Syndrome/drug therapy , Rett Syndrome/physiopathology , Rett Syndrome/psychology , Symporters/genetics , Symporters/metabolism , Valproic Acid/toxicity , K Cl- Cotransporters
SELECTION OF CITATIONS
SEARCH DETAIL
...