Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(18): 4920-4927, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38684075

ABSTRACT

Extending the lifetime of photogenerated electrons in semiconductor systems is an important criterion for the conversion of light into storable energy. We have now succeeded in storing electrons in a photoirradiated colloidal molybdenum disulfide (MoS2) suspension, showcasing its unique reversible photoresponsive behavior. The dampened A and B excitonic peaks indicate the accumulation of photogenerated electrons and the minimization of interactions between MoS2 interlayers. The stored electrons were quantitatively extracted by titrating with a ferrocenium ion in the dark, giving ca. 0.2 electrons per MoS2 formula unit. The emergence of the photoinduced A1g* Raman mode and the decrease in zeta potential after irradiation suggest intercalation of counterions to maintain overall charge balance upon electron storage. These results provide insights into the mechanism of photogenerated electron storage in 2D materials and pave the way for the potential application of colloidal 2D materials in electron storage.

2.
Chemistry ; 30(15): e202303681, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38116819

ABSTRACT

N-heterocyclic carbene (NHC) monolayers are transforming electrocatalysis and biosensor design via their increased performance and stability. Despite their increasing use in electrochemical systems, the integrity of the NHC monolayer during voltage perturbations remains largely unknown. Herein, we deploy surface-enhanced Raman spectroscopy (SERS) to measure the stability of two model NHCs on gold in ambient conditions as a function of applied potential and under continuous voltammetric interrogation. Our results illustrate that NHC monolayers exhibit electrochemical stability over a wide voltage window (-1 V to 0.5 V vs Ag|AgCl), but they are found to degrade at strongly reducing (< -1 V) or oxidizing (>0.5 V) potentials. We also address NHC monolayer stability under continuous voltammetric interrogation between 0.2 V and -0.5 V, a commonly used voltage window for sensing, showing they are stable for up to 43 hours. However, we additionally find that modifications of the backbone NHC structure can lead to significantly shorter operational lifetimes. While these results highlight the potential of NHC architectures for electrode functionalization, they also reveal potential pitfalls that have not been fully appreciated in electrochemical applications of NHCs.

3.
Chem Commun (Camb) ; 59(98): 14524-14527, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37966800

ABSTRACT

Gold nanoparticles were functionalized with natural abundance and 13C-labeled N-heterocyclic carbenes (NHCs) to investigate the Au-C stretch. A combinatorial approach of surface enhanced Raman spectroscopy (SERS) and density-functional theory (DFT) calculations highlighted vibrational modes significantly impacted by isotopic labeling at the carbene carbon. Critically, no isotopically-impacted stretching mode showed majority Au-C character.

5.
ACS Appl Mater Interfaces ; 15(29): 35701-35709, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37449918

ABSTRACT

N-Heterocyclic carbenes (NHCs) are promising monolayer-forming ligands that can overcome limitations of thiol-based monolayers in terms of stability, surface functionality, and reactivity across a variety of transition-metal surfaces. Recent publications have reported the ability of NHCs to support biomolecular receptors on gold substrates for sensing applications and improved tolerance to prolonged biofluid exposure relative to thiols. However, important questions remain regarding the stability of these monolayers when subjected to voltage perturbations, which is needed for applications with electrochemical platforms. Here, we investigate the ability of two NHCs, 1,3-diisopropylbenzimidazole and 5-(ethoxycarbonyl)-1,3-diisopropylbenzimidazole, to form monolayers via self-assembly from methanolic solutions of their trifluoromethanesulfonate salts. We compare the electrochemical behavior of the resulting monolayers relative to that of benchmark mercaptohexanol monolayers in phosphate-buffered saline. Within the -0.15 to 0.25 V vs Ag|AgCl voltage window, NHC monolayers are stable on gold surfaces, wherein they electrochemically perform like thiol-based monolayers and undergo similar reorganization kinetics, displaying long-term stability under incubation in buffered media and under continuous voltammetric interrogation. At negative voltages, NHC monolayers cathodically desorb from the electrode surface at lower bias (-0.1 V) than thiol-based monolayers (-0.5 V). At voltages more positive than 0.25 V, NHC monolayers anodically desorb from electrode surfaces at similar voltages to thiol-based monolayers. These results highlight new limitations to NHC monolayer stability imposed by electrochemical interrogation of the underlying gold electrodes. Our results serve as a framework for future optimization of NHC monolayers on gold for electrochemical applications, as well as structure-functionality studies of NHCs on gold.

6.
J Phys Chem Lett ; 14(18): 4219-4224, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37125787

ABSTRACT

N-Heterocyclic carbenes (NHCs) are an attractive alternative to thiol ligands when forming self-assembled monolayers on noble-metal surfaces; however, relative to the well-studied thiol monolayers, comparatively little is known about the binding, orientation, and packing of NHC monolayers. Herein, we combine surface-enhanced Raman spectroscopy (SERS) and first-principles theory to investigate how the alkyl "wingtip" groups, i.e., those attached to the nitrogens of N-heterocyclic carbenes, affect the NHC orientation on gold nanoparticles. Consistent with previous literature, smaller wingtip groups lead to stable flat configurations; surprisingly, bulkier wingtips also have stable flat configurations likely due to the presence of an adatom. Comparison of experimental SERS results with the theoretically calculated spectra for flat and vertical configurations shows that we are simultaneously detecting both NHC configurations. In addition to providing information on the adsorbate geometry, this study highlights the extreme SERS enhancement of vibrational modes perpendicular to the surface.

7.
Angew Chem Int Ed Engl ; 62(21): e202219182, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36853583

ABSTRACT

The widespread application of laser desorption/ionization mass spectrometry (LDI-MS) highlights the need for a bright and multiplexable labeling platform. While ligand-capped Au nanoparticles (AuNPs) have emerged as a promising LDI-MS contrast agent, the predominant thiol ligands suffer from low ion yields and extensive fragmentation. In this work, we develop a N-heterocyclic carbene (NHC) ligand platform that enhances AuNP LDI-MS performance. NHC scaffolds are tuned to generate barcoded AuNPs which, when benchmarked against thiol-AuNPs, are bright mass tags and form unfragmented ions in high yield. To illustrate the transformative potential of NHC ligands, the mass tags were employed in three orthogonal applications: monitoring a bioconjugation reaction, performing multiplexed imaging, and storing and reading encoded information. These results demonstrate that NHC-nanoparticle systems are an ideal platform for LDI-MS and greatly broaden the scope of nanoparticle contrast agents.


Subject(s)
Gold , Metal Nanoparticles , Animals , Gold/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Metal Nanoparticles/chemistry , Ligands , Contrast Media , Information Storage and Retrieval
8.
Chem Commun (Camb) ; 58(95): 13188-13197, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36342012

ABSTRACT

The discovery of N-heterocyclic carbenes (NHCs) revolutionized organometallic chemistry due to their strong metal-ligand bonds. These strong bonds also lend enhanced stability to gold surfaces and nanoparticles. This stability and high degree of synthetic tunability has allowed NHCs to supplant thiols as the ligand of choice when functionalizing gold surfaces. This review article summarizes the basic science and applications of NHCs on gold surfaces and gold nanoparticles. Additionally, scientific questions that are unique to gold-NHC systems are discussed, such as the NHC adatom binding motif and the NHC surface mobility. Finally, new applications for NHCs on gold are covered with particular attention to biomedicine, catalysis, and microelectronics.

9.
Small ; 18(52): e2205780, 2022 12.
Article in English | MEDLINE | ID: mdl-36344422

ABSTRACT

The advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect-laden seeds using lithographic and vapor-phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side-faceting. The nanotriangles formed in this high-yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close-packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single-crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.


Subject(s)
Gold , Nanostructures , Gold/chemistry , Nanostructures/chemistry
10.
ACS Appl Mater Interfaces ; 14(24): 28186-28198, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35695394

ABSTRACT

The subwavelength confinement of light energy in the nanogaps formed between adjacent plasmonic nanostructures provides the foundational basis for nanophotonic applications. Within this realm, air-filled nanogaps are of central importance because they present a cavity where application-specific nanoscale objects can reside. When forming such configurations on substrate surfaces, there is an inherent difficulty in that the most technologically relevant nanogap widths require closely spaced nanostructures separated by distances that are inaccessible through standard electron-beam lithography techniques. Herein, we demonstrate an assembly route for the fabrication of aligned plasmonic gold trimers with air-filled vertical nanogaps having widths that are defined with spatial controls that exceed those of lithographic processes. The devised procedure uses a sacrificial oxide layer to define the nanogap, a glancing angle deposition to impose a directionality on trimer formation, and a sacrificial antimony layer whose sublimation regulates the gold assembly process. By further implementing a benchtop nanoimprint lithography process and a glancing angle ion milling procedure as additional controls over the assembly, it is possible to deterministically position trimers in periodic arrays and extend the assembly process to dimer formation. The optical response of the structures, which is characterized using polarization-dependent spectroscopy, surface-enhanced Raman scattering, and refractive index sensitivity measurements, shows properties that are consistent with simulation. This work, hence, forwards the wafer-based processing techniques needed to form air-filled nanogaps and place plasmonic energy at site-specific locations.

11.
ACS Omega ; 7(7): 6419-6426, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35224403

ABSTRACT

The high sensitivity and functional group selectivity of surface-enhanced Raman scattering (SERS) make it an attractive method for enzyme sensing, but there is currently a severe lack of enzyme substrates that release SERS reporter molecules with favorable detection properties. We find that 2-mercaptopyridine-3-carbonitrile ( o-MPN) and 2-mercaptopyridine-5-carbonitrile ( p-MPN) are highly effective as SERS reporter molecules that can be captured by silver or gold nanoparticles to give intense SERS spectra, each with a distinctive nitrile peak at 2230 cm-1. p-MPN is a more sensitive reporter and can be detected at low nanomolar concentrations. An assay validation study synthesized two novel substrate molecules, Glc-o-MPN and Glc-p-MPN, and showed that they can be cleaved efficiently by ß-glucosidase (K m = 228 and 162 µM, respectively), an enzyme with broad industrial and biomedical utility. Moreover, SERS detection of the released reporters ( o-MPN or p-MPN) enabled sensing of ß-glucosidase activity and ß-glucosidase inhibition. Comparative experiments using a crude almond flour extract showed that the presence of ß-glucosidase activity could be confirmed by SERS detection in a much shorter time period (>10 time shorter) than by UV-vis absorption detection. It is likely that a wide range of enzyme assays and diagnostic tests can be developed using 2-mercaptopyridine-carbonitriles as SERS reporter molecules.

12.
ACS Omega ; 7(1): 1444-1451, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036806

ABSTRACT

The ability to functionalize gold nanoparticle surfaces with target ligands is integral to developing effective nanosystems for biomedical applications, ranging from point-of-care diagnostic devices to site-specific cancer therapies. By forming strong covalent bonds with gold, thiol functionalities can easily link molecules of interest to nanoparticle surfaces. Unfortunately, thiols are inherently prone to oxidative degradation in many biologically relevant conditions, which limits their broader use as surface ligands in commercial assays. Recently, N-heterocyclic carbene (NHC) ligands emerged as a promising alternative to thiols since initial reports demonstrated their remarkable stability against ligand displacement and stronger metal-ligand bonds. This work explores the long-term stability of NHC-functionalized gold nanoparticles suspended in five common biological media: phosphate-buffered saline, tris-glycine potassium buffer, tris-glycine potassium magnesium buffer, cell culture media, and human serum. The NHCs on gold nanoparticles were probed with surface-enhanced Raman spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS). SERS is useful for monitoring the degradation of surface-bound species because the resulting vibrational modes are highly sensitive to changes in ligand adsorption. Our measurements indicate that imidazole-based NHCs remain stable on gold nanoparticles over the 21 days of examination in all tested environments, with no observed change in the molecule's SERS signature, XPS response, or UV-vis plasmon band.

13.
J Biophotonics ; 15(1): e202100158, 2022 01.
Article in English | MEDLINE | ID: mdl-34609064

ABSTRACT

Multiphoton microscopy using short-wave infrared (SWIR) radiation offers nondestructive and high-resolution imaging through tissue. Two-photon fluorescence (TPF), for example, is commonly employed to increase the penetration depth and spatial resolution of SWIR imaging, but the broad spectral peaks limit its multiplexing capabilities. Hyper-Raman scattering, the vibrational analog of TPF, yields spectral features on the order of 20 cm-1 and reporter-functionalized noble metal nanoparticles (NPs) provide a platform for both hyper-Raman signal enhancement and selective targeting in biological media. Herein we report the first tissue imaging study employing surface-enhanced resonance hyper-Raman scattering (SERHRS), the two-photon analog of surface-enhanced resonance Raman scattering. Specifically, we employ multicore gold-silica NPs (Au@SiO2 NPs) functionalized with a near infrared-resonant cyanine dye, 3,3'-diethylthiatricarbocyanine iodide as a SERHRS reporter. SWIR SERHRS spectra are efficiently acquired from mouse spleen tissue. SWIR SERHRS combines two-photon imaging advantages with narrow vibrational peak widths, presenting future applications of multitargeted bioimaging.


Subject(s)
Metal Nanoparticles , Spectrum Analysis, Raman , Animals , Gold , Mice , Microscopy , Silicon Dioxide
14.
J Phys Chem Lett ; 12(42): 10270-10276, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34652912

ABSTRACT

Carrier-doped semiconductor nanocrystals (NCs) offer strong plasmonic responses at frequencies beyond those accessible by conventional plasmonic nanoparticles. Like their noble metal analogues, these emerging materials can harness free space radiation and confine it to the nanoscale but at resonance frequencies that are natively infrared and spectrally tunable by carrier concentration. In this work we combine monochromated STEM-EELS and theoretical modeling to investigate the capability of colloidal indium tin oxide (ITO) NC pairs to form hybridized plasmon modes, providing an additional route to influence the IR plasmon spectrum. These results demonstrate that ITO NCs may have greater coupling strength than expected, emphasizing their potential for near-field enhancement and resonant energy transfer in the IR region.

15.
Anal Chem ; 93(40): 13534-13538, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34582180

ABSTRACT

The proliferation of N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on gold surfaces stems from their exceptional stability compared to conventional thiol-SAMs. The prospect of biological applications for NHC-SAMs on gold shows the need for biocompatible techniques (e.g., large biomolecule detection and high throughput) that assesses SAM molecular composition. Herein, we demonstrate that laser desorption ionization mass spectrometry (LDI-MS) is a powerful and facile probe of NHC surface chemistry. LDI-MS of prototypical imidazole-NHC- and benzimidazole-NHC-functionalized AuNPs yields exclusively [NHC2Au]+ ions and not larger gold clusters. Employing benzimidazole-NHC isotopologues, we explore how monolayers pack on a single AuNP and the lability of the NHCs once ligated. Quantitative analysis of the homoleptic and heteroleptic [NHC2Au]+ ions is performed by comparing to a binomial model representative of a randomized monolayer. Lastly, the reduction of nitro-NHC-AuNPs to amine-NHC-AuNPs is tracked via LDI-MS signals, illustrating the ability of LDI-MS to probe postsynthetic modifications of the anchored NHCs, which is critical for current and future applications of NHC surfaces.


Subject(s)
Gold , Metal Nanoparticles , Lasers , Mass Spectrometry , Methane/analogs & derivatives
16.
J Chem Phys ; 155(9): 090401, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34496589
17.
Langmuir ; 37(19): 5864-5871, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33914540

ABSTRACT

N-heterocyclic carbenes (NHCs) have emerged as versatile and robust ligands for noble metal surface modifications due to their ability to form compact, self-assembled monolayers. Despite a growing body of research, previous NHC surface modification schemes have employed just two structural motifs: the benzimidazolium NHC and the imidazolium NHC. However, different NHC moieties, including saturated NHCs, are often more effective in homogenous catalysis chemistry than these aforementioned motifs and may impart numerous advantages to NHC surfaces, such as increased stability and access to chiral groups. This work explores the preparation and stability of NHC-coated gold surfaces using imidazolium and imidazolinium NHC ligands. X-ray photoelectron spectroscopy and surface-enhanced Raman spectroscopy demonstrate the attachment of NHC ligands to the gold surface and show enhanced stability of imidazolinium compared to the traditional imidazolium under harsh acidic conditions.

18.
J Chem Phys ; 154(3): 034703, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33499640

ABSTRACT

We report a comprehensive experimental and theoretical study of the lower-wavenumber vibrational modes in the surface-enhanced hyper-Raman scattering (SEHRS) of Rhodamine 6G (R6G) and its isotopologue R6G-d4. Measurements acquired on-resonance with two different electronic states, S1 and S2, are compared to the time-dependent density functional theory computations of the resonance hyper-Raman spectra and electrodynamics-quantum mechanical computations of the SEHRS spectra on-resonance with S1 and S2. After accounting for surface orientation, we find excellent agreement between experiment and theory for both R6G and its isotopologue. We then present a detailed analysis of the complex vibronic coupling effects in R6G and the importance of surface orientation for characterizing the system. This combination of theory and experiment allows, for the first time, an unambiguous assignment of lower-wavenumber vibrational modes of R6G and its isotopologue R6G-d4.

19.
Nano Lett ; 20(11): 7987-7994, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-32870693

ABSTRACT

Leveraging recent advances in electron energy monochromation and aberration correction, we record the spatially resolved infrared plasmon spectrum of individual tin-doped indium oxide nanocrystals using electron energy-loss spectroscopy (EELS). Both surface and bulk plasmon responses are measured as a function of tin doping concentration from 1-10 atomic percent. These results are compared to theoretical models, which elucidate the spectral detuning of the same surface plasmon resonance feature when measured from aloof and penetrating probe geometries. We additionally demonstrate a unique approach to retrieving the fundamental dielectric parameters of individual semiconductor nanocrystals via EELS. This method, devoid from ensemble averaging, illustrates the potential for electron-beam ellipsometry measurements on materials that cannot be prepared in bulk form or as thin films.

20.
Nanoscale ; 12(31): 16489-16500, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32790810

ABSTRACT

With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag+ ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhanced Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements.

SELECTION OF CITATIONS
SEARCH DETAIL
...