Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytotherapy ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38970614

ABSTRACT

Approval of induced pluripotent stem cells (iPSCs) for the manufacture of cell therapies to support clinical trials is now becoming realized after 20 years of research and development. In 2022 the International Society for Cell and Gene Therapy (ISCT) established a Working Group on Emerging Regenerative Medicine Technologies, an area in which iPSCs-derived technologies are expected to play a key role. In this article, the Working Group surveys the steps that an end user should consider when generating iPSCs that are stable, well-characterised, pluripotent, and suitable for making differentiated cell types for allogeneic or autologous cell therapies. The objective is to provide the reader with a holistic view of how to achieve high-quality iPSCs from selection of the starting material through to cell banking. Key considerations include: (i) intellectual property licenses; (ii) selection of the raw materials and cell sources for creating iPSC intermediates and master cell banks; (iii) regulatory considerations for reprogramming methods; (iv) options for expansion in 2D vs. 3D cultures; and (v) available technologies and equipment for harvesting, washing, concentration, filling, cryopreservation, and storage. Some key process limitations are highlighted to help drive further improvement and innovation, and includes recommendations to close and automate current open and manual processes.

2.
Adv Biochem Eng Biotechnol ; 115: 185-219, 2009.
Article in English | MEDLINE | ID: mdl-19623478

ABSTRACT

Modern biotechnology has grown over the last 35 years to a maturing industry producing and delivering high-value biopharmaceuticals that yield important medical and economical benefits. The constantly increasing need for biopharmaceuticals and significant costs related to time-consuming R&D work makes this industry risky and highly competitive. This trend is confirmed by the important number of biopharmaceuticals that are actually under development at all stages by all major pharmaceutical industry companies. A consequence of this evolution is an increasing need for development and manufacturing capacity. The build up of traditional - stainless steel - technology is complicated, time consuming and very expensive. The decision for such a major investment needs to be taken early in the development cycle of a promising drug to cope with future demands for clinical trials and product launch. Possibilities for the reduction of R&D and manufacturing costs are therefore of significant interest in order to be competitive.In this chapter, four case studies are presented which outline ways to reduce significantly R&D and manufacturing costs by using disposable technology in the frame of a the transfer of an antibody manufacturing process, the preparation of media and buffers in commercial manufacturing and a direct comparison of a traditional and a fully disposable pilot plant.


Subject(s)
Biological Products/standards , Bioreactors , Cell Culture Techniques/instrumentation , Disposable Equipment , Drug Industry/instrumentation , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/economics , Automation/economics , Automation/instrumentation , Biological Products/economics , Biological Products/metabolism , Cell Culture Techniques/economics , Culture Media/analysis , Culture Media/chemistry , Drug Industry/economics , Equipment Design , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/economics , Recombinant Proteins/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...