Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33434036

ABSTRACT

Strongylodon macrobotrys, commonly known as the jade vine, emerald vine, or turquoise jade vine, is a species of Fabaceae native to the Philippines. The plants have blue-green color inflorescences, which makinge them one of the most admired ornamental plants in Brazil (Muniz et al. 2015). In addition, the plants contain compounds with anticancer properties (Ragasa et al. (2014) isolated compounds from S. macrobotrys with anticancer properties. In March 2019, an adult jade plant, grown under the trellis system in an experimental area at the campus of the University of São Paulo (USP), Piracicaba, state of São Paulo, was found showing mosaic symptoms typical of a virus infection. Preliminary examination of negatively stained leaf extracts by transmission electron microscopy detected elongated, flexuous particles similar tolike thoseat of a potyviruses. Further observations of thin sections of symptomatic leaf tissues revealed the presence of cylindrical inclusions, as well as bundles of thin, elongated, and filamentous particles, typical of potyvirus infection in epidermal, parenchymalparenchymal, and vascular regions, as well as bundles of thin, elongated and filamentous particles. Subsequent molecular and biological assays confirmed the presence of a potyvirusTo identify the species of the virus, .Presence of a potyvirus was confirmed by subsequent molecular and biological assays. Ttotal RNA was extracted from a pool of symptomatic leaves from the plant using the Purelink viral RNA/DNA kit (Thermo Fisher Scientific), and analyzed by one- step RT-PCR using potyviruses universal primers PV1/SP6 and WCIEN-sense (Mackenzie et al. 1998; Maciel et al. 2011), which amplify a 750-bp fragment. Total RNA extracted from an asymptomatic jade vine, obtained from a florist shop, was used as a negative controlincluded in the assay. PCR products at the expected size (~750-bp) were observed in the symptomatic plant but not in the asymptomatic plant. BLASTn analysis of the Nnucleotide sequence of the amplicon obtained only from total RNA of the symptomatic plant (GenBank accession no. MN970030) showed that it shares 90.82% to 97.859% identity with corresponding nucleotide sequences of the Korean isolate WS162 of soybean mosaic virus (SMV) deposited at the GenBank (, accession no. FJ640973, FJ640956, D88616). Extracts from symptomatic leaves of the jade plant wereas mechanically inoculated onto leaves of healthy plants of jade vine, Jack bean (Canavalia ensiformis), soybean cv. NA 5909 (Glycine max), cowpea (Vigna unguiculata), and passion fruit (Passiflora edulis f. flavicarpa). One plant of jade plant and four plants of each other species were inoculated , and infection was assessed based and monitored for symptom expression on symptom expression, and RT-PCR. The jade vine and Jack bean plants were infected by SMV, showingdeveloped mild mosaic symptoms approximately 60 and 15 days after inoculation, respectively , whereas the plants of other species were absent of any visible symptoms . To confirm the potyvirus identity, the jade vine samples were also tested by cConventional RT-PCR with SMV-specific primers pairs CP-F-SMV/CP-R-SMV (Jaramillo Mesa et al., 2018) and SMV-CPf/SMV-CPr (Wang and Ghabrial, 2002), thawhicht amplify fragments of 1000 990-bp and 469-bp90, respectively, nucleotides offrom the CP geneome region of SMV was performed, respectively. Amplicons of expected sizes were obtained from the total RNA of the leaves of field-infected and the mechanically inoculated plant of jade plantsvine as well as the Jack bean plants, but not from the asymptomatic jade plantvine and plants of other species the negative control. The viral nucleotide sequences obtained with the above pairs of primersBLASTn analysis of nucleotide sequences of the amplicons showed that they share 96.81% and 97.63% identity, respectively, with the same Korean SMV isolate WS162. These results demonstrate that… the field-symptomatic jade vine was infected with SMV, which is naturally transmitted by aphids speciess in a non-persistent manner and via soybean infected seeds (Hajimorad et al. 2018)( ). The virus appears to have has a restricted narrow natural host range., Aapart from soybean, and to date, it has only been reported the natural infection has been documented only in soybean, Lagenaria siceraria, Passiflora spp., Pinellia ternata, Senna occidentalis, and Vigna angularis (Almeida et al., 2002; Chakraborty et al. 2016; Hajimorad et al. 2018). To our knowledge, this is the first report of SMV in S. macrobotrys in the world. Further surveys are necessary to determine the incidence of the virus in ornamental jade plants vines and its importance as virus reservoirs for commercial soybean crops.

2.
Plant Dis ; 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32886039

ABSTRACT

Centella asiatica is a perennial, herbaceous creeper plant that belongs to the family Apiaceae. It has been known since prehistoric times and has been used for therapeutic and cosmetic purposes (James and Dubery 2009; Gohil et al. 2010), and is easily propagated vegetatively. In 2018, plants of C. asiatica exhibiting foliar symptoms of mosaic and malformation were found in the botanical garden of the Plantarum Institute (Nova Odessa municipality, São Paulo state - 22°46'45.8"S 47°18'47.5"W) and in an experimental area at ESALQ/USP (Piracicaba municipality, São Paulo state - 22°42'26.0"S 47°37'48.6"W). In both locations the plants were grown in beds of approximately 4 m2 and all of them were symptomatic. Initially, leaf extract from symptomatic C. asiatica plants was examined by transmission electron microscopy (TEM) after being negatively stained with 1% uranyl acetate. Potyvirus-like flexuous filamentous particles were observed in leaf samples from both locations. TEM of thin sections of symptomatic leaf tissues revealed the presence of cylindrical inclusions, characteristic of infection by potyviruses, in the cytoplasm of epidermal, parenchymal, and vascular cells. Total RNA was extracted from symptomatic leaves collected in the Plantarum Institute (3 samples), and at Escola Superior de Agricultura Luiz de Queiroz (1 sample) using the Purelink viral RNA/DNA kit (Thermo Fisher Scientific, Waltham, USA). Reverse Transcription -Polymerase Chain Reaction (RT-PCR) was performed using the degenerate primers CIFor (5'-GGIVVIGTIGGIWSIGGIAARTCIAC-3') and CIRev (5'-ACICCRTTYTCDATDATRTTIGTIGC-3'), which amplify a fragment of approximately 700 bp within the the cylindrical inclusion protein gene of potyviruses (Ha et al. 2008). Amplicons of the expected size were obtained for all four samples analysed. One amplicon per location was purified using the Wizard® SV Gel and PCR Clean-Up System kit (Promega), and directly sequenced in both directions at Macrogen Inc (Seoul, South Korea). The nucleotide sequences obtained from the symptomatic C. asiatica plants collected in the Plantarum Institute (GenBank Acc. No. MT668627), and at ESALQ/USP (GenBank Acc. No. MT668626) showed 97.1% and 96.2% identity, respectively, with the nucleotide sequence of a Brazilian isolate of bidens mosaic virus (BiMV), family Potyviridae, genus Potyvirus (GenBank Acc. No. KF649336). To confirm the infection of C. asiatica plants with BiMV, the previously extracted RNAs were analyzed by RT-PCR using the specific primers 8331 (5'-CGTGGGGCTATCCTGAATTG-3') and 9046 (5'-CCACATCAGAGAAGTGTGCC-3'), which amplify a fragment of 715 bp corresponding to the BiMV coat protein gene (Suzuki et al. 2009). The expected size amplicons were obtained for all four samples of symptomatic plants of C. asiatica. The nucleotide sequences of two amplicons (GenBank Acc. Nos. MT668628, and MT668629), representing plants from each location, showed 94.6% to 95.6% identities with corresponding nucleotide sequences of the coat protein gene of BiMV from Brazil (GenBank Acc. Nos. KF649336, AY960150, and AY960151). A leaf extract of a symptomatic C. asiatica plant was mechanically inoculated to healthy plants of Apium graveolens, Bidens pilosa, C. asiatica, Chenopodium amaranticolor, C. quinoa, Coriander sativum, Nicotiana benthamiana, N. tabacum and Petroselinum crispum. C. asiatica became systemically infected, reproducing the original symptoms of leaf mosaic and malformation. N. benthamiana was infected and developed severe mosaic symptoms, whereas C. amaranticolor and C. quinoa reacted only with necrotic and chlorotic local lesions, respectively. Other assayed plants were not infected. Potyvirus-like particles were observed by TEM in the infected plants and BiMV infection was confirmed by RT-PCR. Transmission assays of the BiMV isolate by aphids Myzus persicae and Aphys gossypii to healthy C. asiatica plants were also performed. Virus-free aphids of the two species, reared on Capsicum annuum and Gossypium hirsutum respectively, were fasted for 30 min and then placed, separately, on symptomatic leaves of C. asiatica for an acquisition access period (AAP) of 10 min. After that, groups of six insects were transferred, separately, to four healthy C. asiatica plants for an inoculation access period (IAP) of 24 h. After inoculation the insects were killed manually. Approximately 30 days later, one plant inoculated with each species of aphid exhibited symptoms and infection was confirmed by RT-PCR and nucleotide sequencing of the amplicons. BiMV was absent in control, non-inoculated plants in both mechacial and aphid transmission assays. Infection of spontaneously growing C. asiatica plants by potyvirus, determined by TEM, was previously reported in Curitiba and Colombo, state of Paraná, Brazil by Lima Neto and Souza (1981), but the virus was not fully characterized and identified. In addition to BiMV, plants of C. asiatica are also suscptible to infection with cucumber mosaic virus (CMV), as reported by Cardin and Moury (2010) in Madagascar. This is the first identification of BiMV naturally infecting C. asiatica. Additional works on effects of BiMV infection of C. asiatica on commercial production and pharmaceutical properties are required.

3.
Arch Virol ; 165(6): 1463-1467, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32306146

ABSTRACT

Senna rizzinii is a flowering shrub found mainly in the northeast region of Brazil. Here, we report the coding-complete genome sequence, particle morphology, mode of transmission, and the indicator host responses of an isolate of the putative allexivirus cassia mild mosaic virus (CaMMV) found in S. rizzinii. The virus was transmitted mechanically to Chenopodium amaranticolor, C. quinoa, Gomphrena globosa, which showed local lesions, and S. rizzinii, and S. occidentalis, which were infected systemically. It was also efficiently transmitted to S. rizzinii by grafting. Seed transmission was not observed. The near-complete genome sequence of the virus is 7829 nucleotides in length, containing six open reading frames (ORF), like other allexiviruses.


Subject(s)
Flexiviridae/genetics , Flexiviridae/isolation & purification , Genome, Viral , Senna Plant/virology , Brazil , Flexiviridae/classification , Open Reading Frames , Phylogeny , Plant Diseases/virology , RNA, Viral/genetics , Whole Genome Sequencing
4.
Arch Virol ; 164(11): 2805-2810, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31451963

ABSTRACT

Physalis peruviana is a perennial solanaceous plant that has recently been established as a commercial crop in Brazil. This work reports the near-complete genome sequence, particle morphology, and plant host responses to a putative new sobemovirus, named "physalis rugose mosaic virus". The virus, characterized by isometric particles of ca. 30 nm in diameter, causes foliar symptoms of mosaic, malformation and blistering, accompanied by stunting. The near-complete genome sequence comprises 4175 nucleotides and contains five open reading frames that are similar to those of other sobemoviruses. In addition to P. peruviana, the new virus systemically infected Capsicum annuum, Nicotiana tabacum and Solanum lycopersicum by mechanical inoculation. Thus, this virus may cause disease in these crops in the field.


Subject(s)
Genome, Viral/genetics , Mosaic Viruses/classification , Mosaic Viruses/growth & development , Physalis/virology , Plant Diseases/virology , Plant Viruses/classification , Plant Viruses/genetics , Brazil , Capsicum/virology , Solanum lycopersicum/virology , Mosaic Viruses/genetics , Plant Viruses/growth & development , RNA, Viral/genetics , Nicotiana/virology
5.
Arch Virol ; 161(5): 1335-41, 2016 May.
Article in English | MEDLINE | ID: mdl-26869279

ABSTRACT

This work reports the complete genome sequence, production of a polyclonal antiserum, and host range of a Brazilian strain of johnsongrass mosaic virus (JGMV) found infecting Panicum maximum in the state of São Paulo, Brazil. The complete genome sequence of this potyvirus, comprising 9874 nucleotides, showed 82 % amino acid sequence identity in the polyprotein to that of an isolate of JGMV from Australia. The experimental host range of this virus included mainly fodder species. Cultivated species such as rice, oats, sugarcane, rye, corn and wheat were not infected, suggesting that current isolates of this potyvirus do not represent a threat to these crops in Brazil.


Subject(s)
Genome, Viral/genetics , Potyvirus/genetics , Amino Acid Sequence , Base Sequence , Brazil , Enzyme-Linked Immunosorbent Assay , Molecular Sequence Data , Panicum/virology , Poaceae/virology , Potyvirus/isolation & purification , Potyvirus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...