Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38803190

ABSTRACT

Melanin, particularly eumelanin, is commonly viewed as an efficient antioxidant and photoprotective pigment. Nonetheless, the ability of melanin to photogenerate reactive oxygen species and sensitize the formation of cyclobutane pyrimidine dimers may contribute to melanin-dependent phototoxicity. The phototoxic potential of melanin depends on a variety of factors, including molecular composition, redox state, and degree of aggregation. Using complementary spectroscopic and analytical methods we analyzed the physicochemical properties of Dopa-melanin, a synthetic model of eumelanin, subjected to oxidative degradation induced by aerobic photolysis or exposure to 0.1 M hydrogen peroxide. Both modes of oxidative degradation were accompanied by dose-dependent bleaching of melanin and irreversible modifications of its paramagnetic, ion- and electron-exchange and antioxidant properties. Bleached melanin exhibited enhanced efficiency to photogenerate singlet oxygen in both UVA and short-wavelength visible light. Although chemical changes of melanin subunits, including a relative increase of DHICA content and disruption of melanin polymer induced by oxidative degradation were considered, these two mechanisms may not be sufficient for a satisfactory explanation of the elevated photosensitizing ability of the bleached eumelanin. This study points out possible adverse changes in the photoprotective and antioxidant properties of eumelanin that could occur in pigmented tissues after exposure to high doses of intense solar radiation.

2.
Pigment Cell Melanoma Res ; 32(3): 359-372, 2019 05.
Article in English | MEDLINE | ID: mdl-30457208

ABSTRACT

Although melanin is a photoprotective pigment, its elevated photochemical reactivity could lead to various phototoxic processes. Photoreactivity of synthetic pheomelanin, derived from 5-S-cysteinyldopa (5SCD-M) and its photodegradation products obtained by subjecting the melanin to aerobic irradiation with UV-visible light, was examined employing an array of advanced physicochemical methods. Extensive photolysis of 5SCD-M was accompanied by partial bleaching of the melanin, modification of its paramagnetic properties, and significant increase in the ability to photogenerate singlet oxygen. The changes correlated with a substantial decrease in the melanin content of benzothiazine (BT) units and increase of modified benzothiazole (BZ) units. Synthetically prepared BZ exhibited higher efficiency to photogenerate singlet oxygen than the synthetic BT, and the free radical form of BZ, unlike that of BT, did not show measurable spin density on nitrogen atom, which was confirmed by quantum chemical calculations. Formation of modified BZ units in the photobleached 5SCD-M is responsible for the paramagnetic and photochemical changes of the melanin and its elevated phototoxic potential. Given a relatively constant pheomelanin-eumelanin ratio, such undesirable changes could occur in individual of all skin types.


Subject(s)
Melanins/metabolism , Melanins/radiation effects , Photobleaching , Photolysis , Singlet Oxygen/chemistry , Humans , Melanins/chemistry , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Singlet Oxygen/metabolism , Ultraviolet Rays
3.
Cell Biochem Biophys ; 75(3-4): 259-273, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28555359

ABSTRACT

A multi-arm W-band (94 GHz) electron paramagnetic resonance spectrometer that incorporates a loop-gap resonator with high bandwidth is described. A goal of the instrumental development is detection of free induction decay following rapid sweep of the microwave frequency across the spectrum of a nitroxide radical at physiological temperature, which is expected to lead to a capability for Fourier transform electron paramagnetic resonance. Progress toward this goal is a theme of the paper. Because of the low Q-value of the loop-gap resonator, it was found necessary to develop a new type of automatic frequency control, which is described in an appendix. Path-length equalization, which is accomplished at the intermediate frequency of 59 GHz, is analyzed. A directional coupler is favored for separation of incident and reflected power between the bridge and the loop-gap resonator. Microwave leakage of this coupler is analyzed. An oversize waveguide with hyperbolic-cosine tapers couples the bridge to the loop-gap resonator, which results in reduced microwave power and signal loss. Benchmark sensitivity data are provided. The most extensive application of the instrument to date has been the measurement of T1 values using pulse saturation recovery. An overview of that work is provided.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Electron Spin Resonance Spectroscopy/instrumentation , Fourier Analysis , Microwaves , Signal-To-Noise Ratio
4.
Appl Magn Reson ; 48(11-12): 1355-1373, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29805201

ABSTRACT

The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain [M. Raguz, L. Mainali, W. J. O'Brien, and W. K. Subczynski (2015), Exp. Eye Res., 140:179-186]. Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student's t-test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant (P ≤ 0.05) and can be attributed to sources other than preparation/technique.

5.
Appl Magn Reson ; 45(12): 1343-1358, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25541571

ABSTRACT

Spin-label W-band (94 GHz) EPR with a five-loop-four-gap resonator (LGR) was successfully applied to study membrane properties (L. Mainali, J.S. Hyde, W.K. Subczynski, Using spin-label W-band EPR to study membrane fluidity in samples of small volume, J. Magn. Reson. 226 (2013) 35-44). In that study, samples were equilibrated with the selected gas mixture outside the resonator in a sample volume ~100 times larger than the sensitive volume of the LGR and transferred to the resonator in a quartz capillary. A seven-loop-six-gap W-band resonator has been developed. This resonator permits measurements on aqueous samples of 150 nL volume positioned in a polytetrafluoroethylene (PTFE) gas permeable sample tube. Samples can be promptly deoxygenated or equilibrated with an air/nitrogen mixture inside the resonator, which is significant in saturation-recovery measurements and in spin-label oximetry. This approach was tested for lens lipid membranes derived from lipids extracted from two porcine lenses (single donor). Profiles of membrane fluidity and the oxygen transport parameter were obtained from saturation-recovery EPR using phospholipid analog spin-labels. Cholesterol analog spin-labels allowed discrimination of the cholesterol bilayer domain and acquisition of oxygen transport parameter profiles across this domain. Results were compared with those obtained previously for membranes derived from a pool of 100 lenses. Results demonstrate that EPR at W-band can be successfully used to study aqueous biological samples of small volume under controlled oxygen concentration.

6.
J Magn Reson ; 211(2): 228-33, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21741868

ABSTRACT

A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented.


Subject(s)
Electromagnetic Fields , Electron Spin Resonance Spectroscopy/methods , Algorithms , Cyclic N-Oxides/chemistry , Data Interpretation, Statistical , Electron Spin Resonance Spectroscopy/statistics & numerical data , Indicators and Reagents , Nitrogen Oxides/chemistry , Signal Processing, Computer-Assisted , Spin Labels
7.
J Magn Reson ; 212(1): 86-94, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21745756

ABSTRACT

Saturation-recovery (SR) EPR at W-band (94 GHz) to obtain profiles of the membrane fluidity and profiles of the oxygen transport parameter is demonstrated for lens lipid membranes using phosphatidylcholine (n-PC), stearic acid (n-SASL), and cholesterol analog (ASL and CSL) spin labels, and compared with results obtained in parallel experiments at X-band (9.4 GHz). Membranes were derived from the total lipids extracted from 2-year-old porcine lens cortex and nucleus. Two findings are especially significant. First, measurements of the spin-lattice relaxation times T1 for n-PCs allowed T1 profiles across the membrane to be obtained. These profiles reflect local membrane properties differently than profiles of the order parameter. Profiles obtained at W-band are, however, shifted to longer T1 values compared to those obtained at X-band. Second, using cholesterol analog spin labels and relaxation agents (hydrophobic oxygen and water-soluble NiEDDA), the cholesterol bilayer domain was discriminated in membranes made from lipids of the lens nucleus. However, membranes made from cortical lipids show a single homogeneous environment. Profiles of the oxygen transport parameter obtained from W-band measurements are practically identical to those obtained from X-band measurements, and are very similar to those obtained earlier at X-band for membranes made of 2-year-old bovine cortical and nuclear lens lipids (M. Raguz, J. Widomska, J. Dillon, E.R. Gaillard, W.K. Subczynski, Biochim. Biophys. Acta 1788 (2009) 2380-2388). Results demonstrate that SR EPR at W-band has the potential to be a powerful tool for studying samples of small volume, ∼30 nL, compared with the sample volume of ∼3 µL at X-band.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Lens, Crystalline/chemistry , Membrane Lipids/chemistry , Membranes/chemistry , Animals , Biological Transport, Active , Cell Membrane/chemistry , Cholesterol , Data Interpretation, Statistical , Indicators and Reagents , Lipid Bilayers/chemistry , Membrane Fluidity , Oxygen Consumption/physiology , Phosphatidylcholines/chemistry , Spin Labels , Stearic Acids/chemistry , Swine
8.
J Magn Reson ; 205(1): 93-101, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20462775

ABSTRACT

This paper describes a novel experiment on nitroxide radical spin labels using a multiarm EPR W-band bridge with a loop-gap resonator (LGR). We demonstrate EPR spectroscopy of spin labels by linear sweep of the microwave frequency across the spectrum. The high bandwidth of the LGR, about 1 GHz between 3 dB points of the microwave resonance, makes this new experiment possible. A frequency-tunable yttrium iron garnet (YIG) oscillator provides sweep rates as high as 1.8x10(5) GHz/s, which corresponds to 6.3 kT/s in magnetic field-sweep units over a 44 MHz range. Two experimental domains were identified. In the first, linear frequency sweep rates were relatively slow, and pure absorption and pure dispersion spectra were obtained. This appears to be a practical mode of operation at the present level of technological development. The main advantage is the elimination of sinusoidal magnetic field modulation. In the second mode, the frequency is swept rapidly across a portion of the spectrum, and then the frequency sweep is stopped for a readout period; FID signals from a swept line oscillate at a frequency that is the difference between the spectral position of the line in frequency units and the readout position. If there is more than one line, oscillations are superimposed. The sweep rates using the YIG oscillator were too slow, and the portion of the spectrum too narrow to achieve the full EPR equivalent of Fourier transform (FT) NMR. The paper discusses technical advances required to reach this goal. The hypothesis that trapezoidal frequency sweep is an enabling technology for FT EPR is supported by this study.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Algorithms , Cyclic N-Oxides/chemistry , Electromagnetic Fields , Electron Spin Resonance Spectroscopy/instrumentation , Fourier Analysis , Indicators and Reagents , Microwaves , Nitrogen Oxides/chemistry , Spin Labels , Triacetoneamine-N-Oxyl/chemistry
9.
J Magn Reson ; 193(2): 297-304, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18547848

ABSTRACT

A reference arm W-band (94 GHz) microwave bridge with two sample-irradiation arms for saturation recovery (SR) EPR and ELDOR experiments is described. Frequencies in each arm are derived from 2 GHz synthesizers that have a common time-base and are translated to 94 GHz in steps of 33 and 59 GHz. Intended applications are to nitroxide radical spin labels and spin probes in the liquid phase. An enabling technology is the use of a W-band loop-gap resonator (LGR) [J.W. Sidabras, R.R. Mett, W. Froncisz, T.G. Camenisch, J.R. Anderson, J.S. Hyde, Multipurpose EPR loop-gap resonator and cylindrical TE(011) cavity for aqueous samples at 94 GHz, Rev. Sci. Instrum. 78 (2007) 034701]. The high efficiency parameter (8.2 GW(-1/2) with sample) permits the saturating pump pulse level to be just 5 mW or less. Applications of SR EPR and ELDOR to the hydrophilic spin labels 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO) and 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl (TEMPONE) are described in detail. In the SR ELDOR experiment, nitrogen nuclear relaxation as well as Heisenberg exchange transfer saturation from pumped to observed hyperfine transitions. SR ELDOR was found to be an essential method for measurements of saturation transfer rates for small molecules such as TEMPONE. Free induction decay (FID) signals for small nitroxides at W-band are also reported. Results are compared with multifrequency measurements of T(1e) previously reported for these molecules in the range of 2-35 GHz [J.S. Hyde, J.-J. Yin, W.K. Subczynski, T.G. Camenisch, J.J. Ratke, W. Froncisz, Spin label EPR T(1) values using saturation recovery from 2 to 35 GHz. J. Phys. Chem. B 108 (2004) 9524-9529]. The values of T(1e) decrease at 94 GHz relative to values at 35 GHz.


Subject(s)
Electromagnetic Phenomena/instrumentation , Electromagnetic Phenomena/methods , Electron Spin Resonance Spectroscopy/instrumentation , Electron Spin Resonance Spectroscopy/methods , Microwaves , Spin Labels , Equipment Design , Equipment Failure Analysis
10.
Rev Sci Instrum ; 78(3): 034701, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17411204

ABSTRACT

A loop-gap resonator (LGR) and a cylindrical TE(011) cavity resonator for use at W band, 94 GHz, have been designed and characterized using the Ansoft (Pittsburgh, PA) high frequency structure simulator (HFSS; Version 10.0). Field modulation penetration was analyzed using Ansoft MAXWELL 3D (Version 11.0). Optimizing both resonators to the same sample sizes shows that EPR signal intensities of the LGR and TE(011) are similar. The 3 dB bandwidth of the LGR, on the order of 1 GHz, is a new advantage for high frequency experiments. Ultraprecision electric discharge machining (EDM) was used to fabricate the resonators from silver. The TE(011) cavity has slots that are cut into the body to allow penetration of 100 kHz field modulation. The resonator body is embedded in graphite, also cut by EDM techniques, for a combination of reasons that include (i) reduced microwave leakage and improved TE(011) mode purity, (ii) field modulation penetration, (iii) structural support for the cavity body, and (iv) machinability by EDM. Both resonators use a slotted iris. Variable coupling is provided by a three-stub tuning element. A collet system designed to hold sample tubes has been implemented, increasing repeatability of sample placement and reducing sample vibration noise. Initial results include multiquantum experiments up to 9Q using the LGR to examine 1 mM 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in aqueous solution at room temperature and field modulation experiments using the TE(011) cavity to obtain an EPR spectrum of 1 microM TEMPO.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Water/chemistry , Cyclic N-Oxides/analysis , Solutions/chemistry
11.
J Magn Reson ; 185(2): 259-63, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17267251

ABSTRACT

Loop-gap resonator (LGR) technology has been extended to W-band (94GHz). One output of a multiarm Q-band (35GHz) EPR bridge was translated to W-band for sample irradiation by mixing with 59 GHz; similarly, the EPR signal was translated back to Q-band for detection. A cavity resonant in the cylindrical TE011 mode suitable for use with 100 kHz field modulation has also been developed. Results using microwave frequency modulation (FM) at 50 kHz as an alternative to magnetic field modulation are described. FM was accomplished by modulating a varactor coupled to the 59 GHz oscillator. A spin-label study of sensitivity was performed under conditions of overmodulation and gamma2H1(2)T1T2<1. EPR spectra were obtained, both absorption and dispersion, by lock-in detection at the fundamental modulation frequency (50 kHz), and also at the second and third harmonics (100 and 150 kHz). Source noise was deleterious in first harmonic spectra, but was very low in second and third harmonic spectra. First harmonic microwave FM was transferred to microwave modulation at second and third harmonics by the spins, thus satisfying the "transfer of modulation" principle. The loaded Q-value of the LGR with sample was 90 (i.e., a bandwidth between 3 dB points of about 1 GHz), the resonator efficiency parameter was calculated to be 9.3 G at one W incident power, and the frequency deviation was 11.3 MHz p-p, which is equivalent to a field modulation amplitude of 4 G. W-band EPR using an LGR is a favorable configuration for microwave FM experiments.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Microwaves , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Transducers , Electron Spin Resonance Spectroscopy/methods , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
12.
Biophys J ; 88(5): 3641-7, 2005 May.
Article in English | MEDLINE | ID: mdl-15749769

ABSTRACT

Three- and five-quantum absorption and dispersion multiquantum electron paramagnetic resonance spectra of a spin-labeled protein have been obtained for the first time at Q-band (35 GHz). Spectra of arrestin spin-labeled at site 267 were recorded at room temperature as a function of microwave power. The separation of irradiating microwave frequencies, Deltaf, was 10 kHz, and a newly-designed multiquantum Q-band electron paramagnetic resonance bridge was utilized, operating in a superheterodyne detection mode. The sample volume was 30 nL using a 3-loop-2-gap resonator. Most spectra were obtained at a 300 microM concentration in single, 2-min scans, but spectra were also successfully obtained at 30 microM, corresponding to one picomole of protein. Enhanced sensitivity to T(1) and T(2) was evident in the spectra, and linewidths varied considerably across the spectra. The pure absorption displays are beneficial relative to field modulation methods for spectral characterization. The presence of two states of the nitroxide spin-label with different relaxation times is evident, particularly in the dispersion spectra, which are expected to exhibit enhanced sensitivity to lineshape variation relative to absorption. Feasibility has been established for the use of this technique for site-directed spin-labeling studies of biologically relevant samples, particularly the study of protein structure and dynamics.


Subject(s)
Arrestins/chemistry , Arrestins/genetics , Biophysics/methods , Electron Spin Resonance Spectroscopy/methods , Absorption , Animals , Arrestins/metabolism , Cattle , Escherichia coli/metabolism , Microwaves , Models, Molecular , Proteins/chemistry , Quantum Theory , Retinal Rod Photoreceptor Cells , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Spin Labels , Spin Trapping , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...