Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 107(22): 223001, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22182025

ABSTRACT

We have realized a hybrid optomechanical system by coupling ultracold atoms to a micromechanical membrane. The atoms are trapped in an optical lattice, which is formed by retroreflection of a laser beam from the membrane surface. In this setup, the lattice laser light mediates an optomechanical coupling between membrane vibrations and atomic center-of-mass motion. We observe both the effect of the membrane vibrations onto the atoms as well as the backaction of the atomic motion onto the membrane. By coupling the membrane to laser-cooled atoms, we engineer the dissipation rate of the membrane. Our observations agree quantitatively with a simple model.

2.
Phys Rev Lett ; 104(14): 143002, 2010 Apr 09.
Article in English | MEDLINE | ID: mdl-20481938

ABSTRACT

We report experiments in which the vibrations of a micromechanical oscillator are coupled to the motion of Bose-condensed atoms in a trap. The interaction relies on surface forces experienced by the atoms at about 1 microm distance from the mechanical structure. We observe resonant coupling to several well-resolved mechanical modes of the condensate. Coupling via surface forces does not require magnets, electrodes, or mirrors on the oscillator and could thus be employed to couple atoms to molecular-scale oscillators such as carbon nanotubes.

3.
Phys Rev Lett ; 99(14): 140403, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17930650

ABSTRACT

We theoretically study the coupling of Bose-Einstein condensed atoms to the mechanical oscillations of a nanoscale cantilever with a magnetic tip. This is an experimentally viable hybrid quantum system which allows one to explore the interface of quantum optics and condensed matter physics. We propose an experiment where easily detectable atomic spin flips are induced by the cantilever motion. This can be used to probe thermal oscillations of the cantilever with the atoms. At low cantilever temperatures, as realized in recent experiments, the backaction of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics. With high but realistic cantilever quality factors, the strong coupling regime can be reached, either with single atoms or collectively with Bose-Einstein condensates. We discuss an implementation on an atom chip.

SELECTION OF CITATIONS
SEARCH DETAIL
...