Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 593(18): 4181-99, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26096614

ABSTRACT

KEY POINTS: Loss-of-function mutations of the skeletal muscle ClC-1 channel cause myotonia congenita with variable phenotypes. Using patch clamp we show that F484L, located in the conducting pore, probably induces mild dominant myotonia by right-shifting the slow gating of ClC-1 channel, without exerting a dominant-negative effect on the wild-type (WT) subunit. Molecular dynamics simulations suggest that F484L affects the slow gate by increasing the frequency and the stability of H-bond formation between E232 in helix F and Y578 in helix R. Three other myotonic ClC-1 mutations are shown to produce distinct effects on channel function: L198P shifts the slow gate to positive potentials, V640G reduces channel activity, while L628P displays a WT-like behaviour (electrophysiology data only). Our results provide novel insight into the molecular mechanisms underlying normal and altered ClC-1 function. ABSTRACT: Myotonia congenita is an inherited disease caused by loss-of-function mutations of the skeletal muscle ClC-1 chloride channel, characterized by impaired muscle relaxation after contraction and stiffness. In the present study, we provided an in-depth characterization of F484L, a mutation previously identified in dominant myotonia, in order to define the genotype-phenotype correlation, and to elucidate the contribution of this pore residue to the mechanisms of ClC-1 gating. Patch-clamp recordings showed that F484L reduced chloride currents at every tested potential and dramatically right-shifted the voltage dependence of slow gating, thus contributing to the mild clinical phenotype of affected heterozygote carriers. Unlike dominant mutations located at the dimer interface, no dominant-negative effect was observed when F484L mutant subunits were co-expressed with wild type. Molecular dynamics simulations further revealed that F484L affected the slow gate by increasing the frequency and stability of the H-bond formation between the pore residue E232 and the R helix residue Y578. In addition, using patch-clamp electrophysiology, we characterized three other myotonic ClC-1 mutations. We proved that the dominant L198P mutation in the channel pore also right-shifted the voltage dependence of slow gating, recapitulating mild myotonia. The recessive V640G mutant drastically reduced channel function, which probably accounts for myotonia. In contrast, the recessive L628P mutant produced currents very similar to wild type, suggesting that the occurrence of the compound truncating mutation (Q812X) or other muscle-specific mechanisms accounted for the severe symptoms observed in this family. Our results provide novel insight into the molecular mechanisms underlying normal and altered ClC-1 function.


Subject(s)
Chloride Channels/genetics , Mutation/genetics , Myotonia Congenita/genetics , Adult , Aged , Child , Female , Genetic Association Studies/methods , Heterozygote , Humans , Ion Channel Gating/genetics , Male , Middle Aged , Muscle, Skeletal/metabolism , Young Adult
2.
Acta Physiol (Oxf) ; 212(4): 316-29, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24888432

ABSTRACT

AIM: Notwithstanding the widely accepted idea that following disuse skeletal muscles become faster, an increase in shortening velocity was previously observed mostly in fibres containing type 1 myosin, whereas a decrease was generally found in fibres containing type 2B myosin. In this study, unloaded shortening velocity of pure type 1 and 2B fibres from hindlimb unloaded mice was determined and a decrease in type 2B fibres was found. METHODS: To clarify whether the decrease in shortening velocity could depend on alterations of myosin motor function, an in vitro motility assay approach was applied to study pure type 1 and pure type 2B myosin from hindlimb unloaded mice. The latter approach, assessing actin sliding velocity on isolated myosin in the absence of other myofibrillar proteins, enabled to directly investigate myosin motor function. RESULTS: Actin sliding velocity was significantly lower on type 2B myosin following unloading (2.70 ± 0.32 µm s(-1)) than in control conditions (4.11 ± 0.35 µm s(-1)), whereas actin sliding velocity of type 1 myosin was not different following unloading (0.89 ± 0.04 µm s(-1)) compared with control conditions (0.84 ± 0.17 µm s(-1)). Myosin light chain (MLC) isoform composition of type 2B myosin from hindlimb unloaded and control mice was not different. No oxidation of either type 1 or 2B myosin was observed. Higher phosphorylation of regulatory MLC in type 2B myosin after unloading was found. CONCLUSION: Results suggest that the observed lower shortening velocity of type 2B fibres following unloading could be related to slowing of acto-myosin kinetics in the presence of MLC phosphorylation.


Subject(s)
Actins/chemistry , Muscle Contraction/physiology , Muscle, Skeletal/chemistry , Muscle, Skeletal/physiology , Muscular Atrophy/physiopathology , Myosins/chemistry , Actins/physiology , Animals , Hindlimb Suspension , Kinetics , Male , Mice , Mice, Inbred C57BL , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/physiology , Motion , Myosins/physiology
3.
Br J Pharmacol ; 160(7): 1652-61, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20649569

ABSTRACT

BACKGROUND AND PURPOSE: ClC-K kidney Cl(-) channels are important for renal and inner ear transepithelial Cl(-) transport, and are potentially interesting pharmacological targets. They are modulated by niflumic acid (NFA), a non-steroidal anti-inflammatory drug, in a biphasic way: NFA activates ClC-Ka at low concentrations, but blocks the channel above approximately 1 mM. We attempted to identify the amino acids involved in the activation of ClC-Ka by NFA. EXPERIMENTAL APPROACH: We used site-directed mutagenesis and two-electrode voltage clamp analysis of wild-type and mutant channels expressed in Xenopus oocytes. Guided by the crystal structure of a bacterial CLC homolog, we screened 97 ClC-Ka mutations for alterations of NFA effects. KEY RESULTS: Mutations of five residues significantly reduced the potentiating effect of NFA. Two of these (G167A and F213A) drastically altered general gating properties and are unlikely to be involved in NFA binding. The three remaining mutants (L155A, G345S and A349E) severely impaired or abolished NFA potentiation. CONCLUSIONS AND IMPLICATIONS: The three key residues identified (L155, G345, A349) are localized in two different protein regions that, based on the crystal structure of bacterial CLC homologs, are expected to be exposed to the extracellular side of the channel, relatively close to each other, and are thus good candidates for being part of the potentiating NFA binding site. Alternatively, the protein region identified mediates conformational changes following NFA binding. Our results are an important step towards the development of ClC-Ka activators for treating Bartter syndrome types III and IV with residual channel activity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chloride Channels/metabolism , Ion Channel Gating/drug effects , Kidney/metabolism , Niflumic Acid/pharmacology , Amino Acid Sequence , Animals , Binding Sites , Chloride Channels/antagonists & inhibitors , Chloride Channels/genetics , Dose-Response Relationship, Drug , Humans , Kidney/drug effects , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Oocytes/metabolism , Patch-Clamp Techniques , Sequence Alignment , Transfection , Xenopus
4.
Neuroscience ; 169(2): 863-73, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20580661

ABSTRACT

The role of voltage-gated sodium channels in the transmission of neuropathic pain is well recognized. For instance, genetic evidence recently indicate that the human Nav1.7 sodium channel subtype plays a crucial role in the ability to perceive pain sensation and may represent an important target for analgesic/anti-hyperalgesic drugs. In this study a newly synthesized tocainide congener, named NeP1, was tested in vitro on recombinant hNav1.4 and hNav1.7 channels using patch-clamp technique and, in vivo, in two rat models of persistent neuropathic pain obtained either by chronic constriction injury of the sciatic nerve or by oxaliplatin treatment. NeP1 efficiently blocked hNav1.4 and hNav1.7 channels in a dose- and use-dependent manner, being by far more potent than tocainide. Importantly, the new compound displayed a remarkable use-dependent effect, which likely resulted from a very high affinity for inactivated compared to closed channels. In both models of neuropathic pain, NeP1 was greatly more potent than tocainide in reverting the reduction of pain threshold in vivo. In oxaliplatin-treated rats, NeP1 even produced greater and more durable anti-hyperalgesia than the reference drug tramadol. In addition, in vivo and in vitro studies suggest a better toxicological and pharmacokinetic profile for NeP1 compared to tocainide. Overall, these results indicate NeP1 as a new promising lead compound for further development in the treatment of chronic pain of neuropathic origin.


Subject(s)
Analgesics/pharmacology , Pain/drug therapy , Peripheral Nervous System Diseases/drug therapy , Sodium Channel Blockers/pharmacology , Sodium Channels/physiology , Tocainide/analogs & derivatives , Tocainide/pharmacology , Analgesics/therapeutic use , Animals , Cell Line , Cell Survival/drug effects , Humans , Hyperalgesia/drug therapy , Male , Muscle Proteins/antagonists & inhibitors , NAV1.4 Voltage-Gated Sodium Channel , NAV1.7 Voltage-Gated Sodium Channel , Patch-Clamp Techniques , Protein Binding , Rats , Rats, Sprague-Dawley , Serum Albumin/metabolism , Sodium Channel Blockers/therapeutic use , Tocainide/therapeutic use
5.
Br J Pharmacol ; 149(7): 870-9, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17057758

ABSTRACT

BACKGROUND AND PURPOSE: The 2-propyl-1,4 benzoxazine (AM10) shows a peculiar behaviour in skeletal muscle, inhibiting or opening the ATP-sensitive K(+) (KATP) channel in the absence and presence of ATP, respectively. We focused on tissue selectivity and mechanism of action of AM10 by testing its effects on pancreatic KATP channels by means of both in vitro and in vivo investigations. EXPERIMENTAL APPROACH: In vitro, patch-clamp recordings were performed in native pancreatic beta cells and in tsA201 cells expressing the Kir6.2 Delta C36 channel. In vivo, an intraperitoneal glucose tolerance test was performed in normal mice. KEY RESULTS: In contrast with what observed in the skeletal muscle, AM10, in whole cell perforated mode, did not augment KATP current (I(KATP)) of native beta cells but it inhibited it in a concentration-dependent manner (IC(50): 11.5 nM; maximal block: 60%). Accordingly, in current clamp recordings, a concentration-dependent membrane depolarization was observed. On excised patches, AM10 reduced the open-time probability of KATP channels without altering their single channel conductance; the same effect was observed in the presence of trypsin in the bath solution. Moreover, AM10 inhibited, in an ATP-independent manner, the K(+) current resulting from expressed Kir6.2 Delta C36 (maximal block: 60% at 100 microM; IC(50): 12.7 nM) corroborating an interaction with Kir. In vivo, AM10 attenuated the glycemia increase following a glucose bolus in a dose-dependent manner, without, at the dose tested, inducing fasting hypoglycaemia. CONCLUSION AND IMPLICATIONS: Altogether, these results help to gain insight into a new class of tissue specific KATP channel modulators.


Subject(s)
Adenosine Triphosphate/pharmacology , Aminopyridines/pharmacology , Benzoxazines/pharmacology , Blood Glucose/drug effects , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Glucose Tolerance Test , Humans , In Vitro Techniques , Insulin-Secreting Cells/metabolism , Ion Channel Gating/drug effects , Membrane Potentials/drug effects , Mice , Mutation , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Reference Values , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...