Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 926180, 2022.
Article in English | MEDLINE | ID: mdl-36120582

ABSTRACT

Adipose-derived mesenchymal stem cells (ASCs) represent a valid therapeutic option for clinical application in several diseases, due to their ability to repair damaged tissues and to mitigate the inflammatory/immune response. A better understanding of the underlying mechanisms regulating ASC biology might represent the chance to modulate their in vitro characteristics and differentiation potential for regenerative medicine purposes. Herein, we investigated the effects of the demethylating agent 5-azacytidine (5-aza) on proliferation, clonogenicity, migration, adipogenic differentiation and senescence of ASCs, to identify the molecular pathways involved. Through functional assays, we observed a detrimental effect of 5-aza on ASC self-renewal capacity and migration, accompanied by actin cytoskeleton reorganization, with decreased stress fibers. Conversely, 5-aza treatment enhanced ASC adipogenic differentiation, as assessed by lipid accumulation and expression of lineage-specific markers. We analyzed the involvement of the Akt/mTOR, MAPK and Wnt/ß-catenin pathways in these processes. Our results indicated impairment of Akt and ERK phosphorylation, potentially explaining the reduced cell proliferation and migration. We observed a 5-aza-mediated inhibition of the Wnt signaling pathway, this potentially explaining the pro-adipogenic effect of the drug. Finally, 5-aza treatment significantly induced ASC senescence, through upregulation of the p53/p21 axis. Our data may have important translational implications, by helping in clarifying the potential risks and advantages of using epigenetic treatment to improve ASC characteristics for cell-based clinical approaches.

2.
J Endocrinol Invest ; 42(2): 183-197, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29790086

ABSTRACT

PURPOSE: Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in childhood, rarely affects adults, preferring male. RMS expresses the receptor for androgen (AR) and responds to androgen; however, the molecular action of androgens on RMS is unknown. METHODS: Herein, testosterone (T) effects were tested in embryonal (ERMS) and alveolar (ARMS) RMS cell lines, by performing luciferase reporter assay, RT-PCR, and western blotting experiments. RNA interference experiments or bicalutamide treatment was performed to assess the specific role of AR. Radiation treatment was delivered to characterise the effects of T treatment on RMS intrinsic radioresistance. RESULTS: Our study showed that RMS cells respond to sub-physiological levels of T stimulation, finally promoting AR-dependent genomic and non-genomic effects, such as the transcriptional regulation of several oncogenes, the phosphorylation-mediated post-transductional modifications of AR and the activation of ERK, p38 and AKT signal transduction pathway mediators that, by physically complexing or not with AR, participate in regulating its transcriptional activity and the expression of T-targeted genes. T chronic daily treatment, performed as for the hormone circadian rhythm, did not significantly affect RMS cell growth, but improved RMS clonogenic and radioresistant potential and increased AR mRNA both in ERMS and ARMS. AR protein accumulation was evident in ERMS, this further developing an intrinsic T-independent AR activity. CONCLUSIONS: Our results suggest that androgens sustain and improve RMS transformed and radioresistant phenotype, and therefore, their therapeutic application should be avoided in RMS post puberal patients.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Receptors, Androgen/metabolism , Rhabdomyosarcoma/metabolism , Signal Transduction/physiology , Testosterone/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Rhabdomyosarcoma/pathology , Signal Transduction/drug effects
3.
J Mater Sci Mater Med ; 13(5): 509-15, 2002 May.
Article in English | MEDLINE | ID: mdl-15348605

ABSTRACT

The search for ideal materials for bone substitution has been a challenge for many decades. Numerous natural and synthetic materials have been studied. For this application, exoskeletons of coral have been considered a good alternative given its tendency to resorption, biocompatibility and similarity to the mineral bone phase. Very few studies of these materials consider a detailed analysis of the structure-property relationship. The purpose of this work was to carry out the microstructural characterization of a coralline species named Acropora palmata and the determination of the mechanical and physico-chemical properties. Measurements of hardness, compressive strength, bulk density and apparent porosity were performed. From these results it was determined that this marine coral species could be an alternative xenograft due to its mechanical properties and osteoconductive nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...