Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(1): 2216-2227, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36576434

ABSTRACT

Hybrid smart emulsification systems are highly applicable in manipulating oil-in-water (O/W) droplets. Herein, novel switchable block polymers containing both zwitterionic and tertiary amine pendent groups were designed and synthesized to combine with charged silica particles to stabilize the O/W emulsion responsive to pH. This study was carried out in O/W emulsions stabilized with the polymer and silica particles under different pH conditions. The emulsion system was also simulated using molecular dynamics simulation to reveal the mechanism at molecular levels, thus gaining insight into the relationships between the emulsifying properties and the molecular interaction of the mixed system. Upon acidification of the continuous aqueous phase, protonated polymers with excellent hydrophilicity were induced by charged silica particles to cause rapid emulsion coalescence. In alkaline media, the mixed system conversely stabilized the O/W emulsions, cutting polymer consumption by over three-quarters. The emulsification and demulsification can be switched alternately by tuning the pH conditions. The applications exhibited excellent efficiency in separating heavy oil/water emulsions and proved the high conversion rate in emulsion polymerization. Overall, with this novel strategy to relieve tedious modifications on particle surfaces and massive consumption of polymers, the designed responsive emulsification systems can impart intelligent and controllable chemical reactivity to emulsions on demand in a more affordable and sustainable way.

2.
Phys Rev Lett ; 117(20): 205101, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27886501

ABSTRACT

At the heart of today's solar magnetic field evolution models lies the alpha dynamo description. In this work, we investigate the fate of alpha dynamos as the magnetic Reynolds number Rm is increased. Using Floquet theory, we are able to precisely quantify mean-field effects like the alpha and beta effect (i) by rigorously distinguishing dynamo modes that involve large-scale components from the ones that only involve small scales, and by (ii) providing a way to investigate arbitrary large-scale separations with minimal computational cost. We apply this framework to helical and nonhelical flows as well as to random flows with short correlation time. Our results determine that the alpha description is valid for Rm smaller than a critical value Rm_{c} at which small-scale dynamo instability starts. When Rm is above Rm_{c}, the dynamo ceases to follow the mean-field description and the growth rate of the large-scale modes becomes independent of the scale separation, while the energy in the large-scale modes is inversely proportional to the square of the scale separation. The results in this second regime do not depend on the presence of helicity. Thus, alpha-type modeling for solar and stellar models needs to be reevaluated and new directions for mean-field modeling are proposed.

3.
J Am Chem Soc ; 135(17): 6649-57, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23594106

ABSTRACT

Control of interfacial interactions leads to a dramatic change in shape and morphology for particles based on poly(styrene-b-2-vinylpyridine) diblock copolymers. Key to these changes is the addition of Au-based surfactant nanoparticles (SNPs) which are adsorbed at the interface between block copolymer-containing emulsion droplets and the surrounding amphiphilic surfactant to afford asymmetric, ellipsoid particles. The mechanism of formation for these novel nanostructures was investigated by systematically varying the volume fraction of SNPs, with the results showing the critical nature that the segregation of SNPs to specific interfaces plays in controlling structure. A theoretical description of the system allows the size distribution and aspect ratio of the asymmetric block copolymer colloidal particles to be correlated with the experimental results.


Subject(s)
Polymers/chemical synthesis , Polystyrenes/chemistry , Polyvinyls/chemistry , Pyridines/chemistry , Algorithms , Anisotropy , Cetrimonium , Cetrimonium Compounds/chemistry , Chloroform , Colloids , Emulsions , Gold/chemistry , Microscopy, Electron, Transmission , Nanoparticles , Particle Size , Polymers/chemistry , Scattering, Radiation , Solvents , Surface Tension , Surface-Active Agents/chemistry , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...