Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Technol Ther ; 20(5): 335-343, 2018 05.
Article in English | MEDLINE | ID: mdl-29658779

ABSTRACT

BACKGROUND: Initial Food and Drug Administration-approved artificial pancreas (AP) systems will be hybrid closed-loop systems that require prandial meal announcements and will not eliminate the burden of premeal insulin dosing. Multiple model probabilistic predictive control (MMPPC) is a fully closed-loop system that uses probabilistic estimation of meals to allow for automated meal detection. In this study, we describe the safety and performance of the MMPPC system with announced and unannounced meals in a supervised hotel setting. RESEARCH DESIGN AND METHODS: The Android phone-based AP system with remote monitoring was tested for 72 h in six adults and four adolescents across three clinical sites with daily exercise and meal challenges involving both three announced (manual bolus by patient) and six unannounced (no bolus by patient) meals. Safety criteria were predefined. Controller aggressiveness was adapted daily based on prior hypoglycemic events. RESULTS: Mean 24-h continuous glucose monitor (CGM) was 157.4 ± 14.4 mg/dL, with 63.6 ± 9.2% of readings between 70 and 180 mg/dL, 2.9 ± 2.3% of readings <70 mg/dL, and 9.0 ± 3.9% of readings >250 mg/dL. Moderate hyperglycemia was relatively common with 24.6 ± 6.2% of readings between 180 and 250 mg/dL, primarily within 3 h after a meal. Overnight mean CGM was 139.6 ± 27.6 mg/dL, with 77.9 ± 16.4% between 70 and 180 mg/dL, 3.0 ± 4.5% <70 mg/dL, 17.1 ± 14.9% between 180 and 250 mg/dL, and 2.0 ± 4.5%> 250 mg/dL. Postprandial hyperglycemia was more common for unannounced meals compared with announced meals (4-h postmeal CGM 197.8 ± 44.1 vs. 140.6 ± 35.0 mg/dL; P < 0.001). No participants met safety stopping criteria. CONCLUSIONS: MMPPC was safe in a supervised setting despite meal and exercise challenges. Further studies are needed in a less supervised environment.


Subject(s)
Blood Glucose/analysis , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Pancreas, Artificial , Adolescent , Adult , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/blood , Female , Humans , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Male , Treatment Outcome , Young Adult
2.
Diabetes Technol Ther ; 19(9): 527-532, 2017 09.
Article in English | MEDLINE | ID: mdl-28767276

ABSTRACT

OBJECTIVE: A fully closed-loop insulin-only system was developed to provide glucose control in patients with type 1 diabetes without requiring announcement of meals or activity. Our goal was to assess initial safety and efficacy of this system. RESEARCH DESIGN AND METHODS: The multiple model probabilistic controller (MMPPC) anticipates meals when the patient is awake. The controller used the subject's basal rates and total daily insulin dose for initialization. The system was tested at two sites on 10 patients in a 30-h inpatient study, followed by 15 subjects at three sites in a 54-h supervised hotel study, where the controller was challenged by exercise and unannounced meals. The system was implemented on the UVA DiAs system using a Roche Spirit Combo Insulin Pump and a Dexcom G4 Continuous Glucose Monitor. RESULTS: The mean overall (24-h basis) and nighttime (11 PM-7 AM) continuous glucose monitoring (CGM) values were 142 and 125 mg/dL during the inpatient study. The hotel study used a different daytime tuning and manual announcement, instead of automatic detection, of sleep and wake periods. This resulted in mean overall (24-h basis) and nighttime CGM values of 152 and 139 mg/dL for the hotel study and there was also a reduction in hypoglycemia events from 1.6 to 0.91 events/patient/day. CONCLUSIONS: The MMPPC system achieved a mean glucose that would be particularly helpful for people with an elevated A1c as a result of frequent missed meal boluses. Current full closed loop has a higher risk for hypoglycemia when compared with algorithms using meal announcement.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Meals , Pancreas, Artificial/adverse effects , Accelerometry , Activities of Daily Living , Adult , Algorithms , Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Exercise , Feasibility Studies , Female , Follow-Up Studies , Hospitalization , Humans , Hypoglycemia/epidemiology , Hypoglycemia/etiology , Male , Materials Testing , Risk , Snacks , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...