Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37047281

ABSTRACT

Mass spectrometry is a powerful technique for investigating renal pathologies and identifying biomarkers, and efficient protein extraction from kidney tissue is essential for bottom-up proteomic analyses. Detergent-based strategies aid cell lysis and protein solubilization but are poorly compatible with downstream protein digestion and liquid chromatography-coupled mass spectrometry, requiring additional purification and buffer-exchange steps. This study compares two well-established detergent-based methods for protein extraction (in-solution sodium deoxycholate (SDC); suspension trapping (S-Trap)) with the recently developed sample preparation by easy extraction and digestion (SPEED) method, which uses strong acid for denaturation. We compared the quantitative performance of each method using label-free mass spectrometry in both sheep kidney cortical tissue and plasma. In kidney tissue, SPEED quantified the most unique proteins (SPEED 1250; S-Trap 1202; SDC 1197). In plasma, S-Trap produced the most unique protein quantifications (S-Trap 150; SDC 148; SPEED 137). Protein quantifications were reproducible across biological replicates in both tissue (R2 = 0.85-0.90) and plasma (SPEED R2 = 0.84; SDC R2 = 0.76, S-Trap R2 = 0.65). Our data suggest SPEED as the optimal method for proteomic preparation in kidney tissue and S-Trap or SPEED as the optimal method for plasma, depending on whether a higher number of protein quantifications or greater reproducibility is desired.


Subject(s)
Detergents , Tandem Mass Spectrometry , Animals , Sheep , Detergents/chemistry , Tandem Mass Spectrometry/methods , Proteomics/methods , Reproducibility of Results , Proteins
2.
Clin Epigenetics ; 15(1): 47, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959629

ABSTRACT

BACKGROUND: Individuals born very low birthweight (VLBW) are at increased risk of impaired cardiovascular and respiratory function in adulthood. To identify markers to predict future risk for VLBW individuals, we analyzed DNA methylation at birth and at 28 years in the New Zealand (NZ) VLBW cohort (all infants born < 1500 g in NZ in 1986) compared with age-matched, normal birthweight controls. Associations between neonatal methylation and cardiac structure and function (echocardiography), vascular function and respiratory outcomes at age 28 years were documented. RESULTS: Genomic DNA from archived newborn heel-prick blood (n = 109 VLBW, 51 controls) and from peripheral blood at ~ 28 years (n = 215 VLBW, 96 controls) was analyzed on Illumina Infinium MethylationEPIC 850 K arrays. Following quality assurance and normalization, methylation levels were compared between VLBW cases and controls at both ages by linear regression, with genome-wide significance set to p < 0.05 adjusted for false discovery rate (FDR, Benjamini-Hochberg). In neonates, methylation at over 16,400 CpG methylation sites differed between VLBW cases and controls and the canonical pathway most enriched for these CpGs was Cardiac Hypertrophy Signaling (p = 3.44E-11). The top 20 CpGs that differed most between VLBW cases and controls featured clusters in ARID3A, SPATA33, and PLCH1 and these 3 genes, along with MCF2L, TRBJ2-1 and SRC, led the list of 15,000 differentially methylated regions (DMRs) reaching FDR-adj significance. Fifteen of the 20 top CpGs in the neonate EWAS showed associations between methylation at birth and adult cardiovascular traits (particularly LnRHI). In 28-year-old adults, twelve CpGs differed between VLBW cases and controls at FDR-adjusted significance, including hypermethylation in EBF4 (four CpGs), CFI and UNC119B and hypomethylation at three CpGs in HIF3A and one in KCNQ1. DNA methylation GrimAge scores at 28 years were significantly greater in VLBW cases versus controls and weakly associated with cardiovascular traits. Four CpGs were identified where methylation differed between VLBW cases and controls in both neonates and adults, three reversing directions with age (two CpGs in EBF4, one in SNAI1 were hypomethylated in neonates, hypermethylated in adults). Of these, cg16426670 in EBF4 at birth showed associations with several cardiovascular traits in adults. CONCLUSIONS: These findings suggest that methylation patterns in VLBW neonates may be informative about future adult cardiovascular and respiratory outcomes and have value in guiding early preventative care to improve adult health.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Infant, Newborn , Humans , Young Adult , Adult , Infant, Very Low Birth Weight , Phenotype , Outcome Assessment, Health Care , CpG Islands , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Repressor Proteins/genetics , Apoptosis Regulatory Proteins/genetics
3.
Heart ; 109(14): 1088-1097, 2023 06 26.
Article in English | MEDLINE | ID: mdl-36787970

ABSTRACT

OBJECTIVE: The Multi-Ethnic New Zealand Study of Acute Coronary Syndromes (MENZACS) was established to investigate the drivers of secondary events after first-time acute coronary syndrome (ACS), including addressing inequitable outcomes by ethnicity. Herein, the first clinical outcomes and prognostic modelling approach are reported. METHODS: First, in 28 176 New Zealanders with first-time ACS from a national registry, a clinical summary score for predicting 1-year death/cardiovascular readmission was created using Cox regression of 20 clinical variables. This score was then calculated in the 2015 participant MENZACS study to represent clinical risk. In MENZACS, Cox regression was used to assess N-terminal pro-B-type natriuretic peptide (NT-proBNP) as a prognostic marker for death/cardiovascular readmission in four models, adjusting for (1) age and sex; (2) age, sex, ethnicity; (3) clinical summary score; (4) clinical summary score and ethnicity. RESULTS: Of the 2015 MENZACS participants (mean age 61 years, 79% male, 73% European, 14% Maori, 5% Pacific people), 2003 were alive at discharge. Of the 2003, 416 (20.8%) experienced all-cause death/cardiovascular readmission over a median of 3.5 years. In a simple model, age, male sex, Maori ethnicity and NT-proBNP levels were significant predictors of outcome. After adjustment for the clinical summary score, which includes age and sex, NT-proBNP and ethnicity were no longer statistically significant: log2(NT-proBNP) hazard ratio (HR) 1.03, 95% confidence interval (95% CI) 0.98 to 1.08, p=0.305; Maori ethnicity HR 1.26, 95% CI 0.97 to 1.62, p=0.084. CONCLUSIONS: In 2015 patients with first-time ACS, recurrent events were common (20.8%). Increasing NT-proBNP levels and Maori ethnicity were predictors of death/cardiovascular readmission, but not after adjustment for the 20 clinical risk factors represented by the clinical summary score. TRIAL REGISTRATION NUMBER: ACTRN12615000676516.


Subject(s)
Acute Coronary Syndrome , Humans , Male , Middle Aged , Female , Prognosis , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/therapy , Biomarkers , Maori People , New Zealand/epidemiology , Natriuretic Peptide, Brain , Peptide Fragments , Risk Factors , Risk Assessment
4.
Front Genet ; 13: 1016416, 2022.
Article in English | MEDLINE | ID: mdl-36313436

ABSTRACT

The enzyme cytochrome P450 2D6 (CYP2D6) metabolises approximately 25% of commonly prescribed drugs, including analgesics, anti-hypertensives, and anti-depressants, among many others. Genetic variation in drug metabolising genes can alter how an individual responds to prescribed drugs, including predisposing to adverse drug reactions. The majority of research on the CYP2D6 gene has been carried out in European and East Asian populations, with many Indigenous and minority populations, such as those from Oceania, greatly underrepresented. However, genetic variation is often population specific and analysis of diverse ethnic groups can reveal differences in alleles that may be of clinical significance. For this reason, we set out to examine the range and frequency of CYP2D6 variants in a sample of 202 Maori and Pacific people living in Aotearoa (New Zealand). We carried out long PCR to isolate the CYP2D6 region before performing nanopore sequencing to identify all variants and alleles in these samples. We identified twelve variants which have previously not been reported in the PharmVar CYP2D6 database, three of which were exonic missense variations. Six of these occurred in single samples and one was found in 19 samples (9.4% of the cohort). The remaining five variants were identified in two samples each. Identified variants formed twelve new CYP2D6 suballeles and four new star alleles, now recorded in the PharmVar database. One striking finding was that CYP2D6*71, an allele of uncertain functional status which has been rarely observed in previous studies, occurs at a relatively high frequency (8.9%) within this cohort. These data will help to ensure that CYP2D6 genetic analysis for pharmacogenetic purposes can be carried out accurately and effectively in this population group.

5.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291058

ABSTRACT

Advances in RNA sequencing (RNA-Seq) have facilitated transcriptomic analysis of plasma for the discovery of new diagnostic and prognostic markers for disease. We aimed to develop a short-read RNA-Seq protocol to detect mRNAs, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in plasma for the discovery of novel markers for coronary artery disease (CAD) and heart failure (HF). Circulating cell-free RNA from 59 patients with stable CAD (half of whom developed HF within 3 years) and 30 controls was sequenced to a median depth of 108 paired reads per sample. We identified fragments from 3986 messenger RNAs (mRNAs), 164 long non-coding RNAs (lncRNAs), 405 putative novel lncRNAs and 227 circular RNAs in plasma. Circulating levels of 160 mRNAs, 10 lncRNAs and 2 putative novel lncRNAs were altered in patients compared with controls (absolute fold change >1.2, p < 0.01 adjusted for multiple comparisons). The most differentially abundant transcripts were enriched in mRNAs encoded by the mitochondrial genome. We did not detect any differences in the plasma RNA profile between patients who developed HF compared with those who did not. In summary, we show that mRNAs, lncRNAs and circular RNAs can be reliably detected in plasma by deep RNA-Seq. Multiple coding and non-coding transcripts were altered in association with CAD, including several mitochondrial mRNAs, which may indicate underlying myocardial ischaemia and oxidative stress. If validated, circulating levels of these transcripts could potentially be used to help identify asymptomatic individuals with established CAD prior to an acute coronary event.


Subject(s)
Cell-Free Nucleic Acids , Coronary Artery Disease , RNA, Long Noncoding , Humans , RNA, Circular , RNA, Long Noncoding/genetics , Coronary Artery Disease/genetics , Cell-Free Nucleic Acids/genetics , Sequence Analysis, RNA , Biomarkers
6.
EBioMedicine ; 82: 104170, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35850010

ABSTRACT

BACKGROUND: Plasma cardiac markers may assist in prediction of incident cardiovascular disease. METHODS: The incremental value of cardiac Troponins (T and I) and NT-proBNP added to risk factors in the PREDICT score for incident cardiovascular disease (CVD) in primary care, was assessed in 4102 asymptomatic participants in a randomised controlled trial of Vitamin D (ViDA). Findings were corroborated in 2528 participants in a separate community-based observational registry of CVD-free volunteers (HVOLS). FINDINGS: Hazard ratios for first cardiovascular events adjusted for PREDICT risk factors, comparing fifth to first quintiles of marker plasma concentrations, were 2.57 (95% CI 1.47-4.49); 3.01 (1.66-5.48) and 3.38 (2.04-5.60) for hs-cTnI, hs-cTnT and NT-proBNP respectively. The C statistic for discrimination of the primary endpoint increased from 0.755 to 0.771 (+0.016, p = 0.01). Cardiac marker data correctly reclassified risk upwards in 6.7% of patients and downwards in 3.3%. These findings were corroborated by results from HVOLS. INTERPRETATION: Increments in plasma cardiac biomarkers robustly and reproducibly predicted increased hazard of incident CVD, independent of established risk factors, in two community-dwelling populations. Cardiac markers may augment risk assessment for onset of CVD in primary care. FUNDING: ViDA was funded by the Health Research Council of New Zealand (grant 10/400) and the Accident Compensation Corporation. HVOLS was funded by the Health Research Council of NZ Programme Grants (grants 02/152 and 08/070) and by grants from the Heart Foundation of NZ and the Christchurch Heart Institute Trust. Roche Diagnostics provided in-kind support for NT-proBNP and hs-cTnT assays and Abbott Laboratories for hs-cTnI assays.


Subject(s)
Cardiovascular Diseases , Troponin T , Biomarkers , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Humans , Independent Living , Laboratories , Natriuretic Peptide, Brain , Peptide Fragments , Risk Assessment/methods , Risk Factors , Troponin I , Vitamin D
7.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055195

ABSTRACT

One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)-an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra-mass spectrometry (SWATH-MS) in kidney cortices from control sheep (n = 5), sheep with established rapid-pacing-induced ADHF (n = 8), and sheep after ~4 weeks recovery from ADHF (n = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2-2.6-fold, adjusted p < 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted p < 0.01) and acute phase response (repressed during recovery from ADHF; adjusted p < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.


Subject(s)
Acute Kidney Injury/diagnosis , Biomarkers/metabolism , Heart Failure/metabolism , Proteomics/methods , Acute Kidney Injury/blood , Acute Kidney Injury/metabolism , Acute Kidney Injury/urine , Animals , Biomarkers/blood , Biomarkers/urine , Disease Models, Animal , Heart Failure/blood , Heart Failure/complications , Heart Failure/urine , Humans , Platelet Membrane Glycoproteins/metabolism , Platelet Membrane Glycoproteins/urine , Prognosis , Sheep
8.
Int J Mol Sci ; 22(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768754

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of cardiovascular diseases. We aimed to identify novel lncRNAs associated with the early response to ischemia in the heart. METHODS AND RESULTS: RNA sequencing data gathered from 81 paired left ventricle samples from patients undergoing cardiopulmonary bypass was collected before and after a period of ischemia. Novel lncRNAs were validated with Oxford Nanopore Technologies long-read sequencing. Gene modules associated with an early ischemic response were identified and the subcellular location of selected lncRNAs was determined with RNAscope. A total of 2446 mRNAs, 270 annotated lncRNAs and one novel lncRNA differed in response to ischemia (adjusted p < 0.001, absolute fold change >1.2). The novel lncRNA belonged to a gene module of highly correlated genes that also included 39 annotated lncRNAs. This module associated with ischemia (Pearson correlation coefficient = -0.69, p = 1 × 10-23) and activation of cell death pathways (p < 6 × 10-9). A further nine novel cardiac lncRNAs were identified, of which, one overlapped five cis-eQTL eSNPs for the gene RWD Domain-Containing Sumoylation Enhancer (RWDD3) and was itself correlated with RWDD3 expression (Pearson correlation coefficient -0.2, p = 0.002). CONCLUSION: We have identified 10 novel lncRNAs, one of which was associated with myocardial ischemia and may have potential as a novel therapeutic target or early marker for myocardial dysfunction.


Subject(s)
Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , RNA, Long Noncoding/metabolism , Databases, Genetic , Gene Expression Regulation , Gene Regulatory Networks , Heart Ventricles/metabolism , High-Throughput Nucleotide Sequencing , Humans , Myocardium/metabolism , RNA, Messenger/metabolism , Sequence Analysis, RNA
9.
PLoS One ; 16(7): e0254206, 2021.
Article in English | MEDLINE | ID: mdl-34260629

ABSTRACT

BACKGROUND: Development of a competent collateral circulation in established coronary artery disease is cardio-protective. The vascular endothelial growth factor (VEGF) system plays a key role in this process. We investigated the prognostic performance of circulating VEGF-A and three genetic variants in the VEGFA gene in a clinical coronary cohort. METHODS AND RESULTS: The Coronary Disease Cohort Study (CDCS) recruited 2,140 patients, with a diagnosis of acute coronary syndrome (ACS), after admission to Christchurch or Auckland City Hospitals between July 2002 and January 2009. We present data for 1927 patients from the cohort genotyped for three SNPs in the VEGF-A gene, rs699947 (C-2578A), rs2010963 (C405G) and rs3025039 (C936T). Plasma VEGF-A concentrations were assayed in a subgroup (n = 550) of CDCS patients (geometric mean 36.6 [34.7-38.5] pg/ml). VEGF-A levels correlated with patient heart rate at baseline (p = 0.034). None of rs699947, rs3025039, nor rs2010963 genotypes were significantly associated with VEGF-A levels, but rs3025039 genotype was positively associated with collateral vessels perfusion according to the Rentrop classification (p = 0.01) and baseline natriuretic peptide levels (p<0.05). Survival in the CDCS cohort was independently associated with baseline VEGF-A levels and (in males) with rs699947 genotype. CONCLUSIONS: This study is strongly suggestive that VEGF-A levels have value as a prognostic biomarker in coronary heart disease patients and SNPs in VEGF-A deserve further investigation as prognostic markers and indicators of angiogenic potential influencing the formation of collateral circulation.


Subject(s)
Acute Coronary Syndrome , Vascular Endothelial Growth Factor A , Cohort Studies , Humans , Middle Aged , Polymorphism, Single Nucleotide
10.
Circ Genom Precis Med ; 14(4): e000084, 2021 08.
Article in English | MEDLINE | ID: mdl-34304578

ABSTRACT

Historically marginalized racial and ethnic groups and Indigenous peoples are burdened by significant health inequities that are compounded by their underrepresentation in genetic and genomic research. Of all genome-wide association study participants, ≈79% are of European descent, despite this group constituting only 16% of the global population. For underrepresented populations, polygenic risk scores derived from these studies are less accurate in predicting disease phenotypes, novel population-specific genetic variations may be misclassified as potentially pathogenic, and there is a lack of understanding of how different populations metabolize drugs. Although inclusion of marginalized racial and ethnic groups and Indigenous peoples in genetic and genomic research is crucial, scientific studies must be guided by ethical principles of respect, honesty, justice, reciprocity, and care for individuals and communities. Special considerations are needed to support research that benefits the scientific community as well as Indigenous peoples and marginalized groups. Before a project begins, collaboration with community leaders and agencies can lead to successful implementation of the study. Throughout the study, consideration must be given to issues such as implications of informed consent for individuals and communities, dissemination of findings through scientific and community avenues, and implications of community identity for data governance and sharing. Attention to these issues is critical, given historical harms in biomedical research that marginalized groups and Indigenous peoples have suffered. Conducting genetic and genomic research in partnership with Indigenous peoples and marginalized groups guided by ethical principles provides a pathway for scientific advances that will enhance prevention and treatment of cardiovascular disease for everyone.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study/ethics , Genomics/ethics , Health Inequities , Indigenous Peoples/genetics , Informed Consent , American Heart Association , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/genetics , Humans , Pharmacogenomic Testing , Practice Guidelines as Topic , United States
11.
Eur Heart J ; 42(18): 1742-1756, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33748830

ABSTRACT

AIMS: Inflammation plays an important role in cardiovascular disease (CVD) development. The NOD-like receptor protein-3 (NLRP3) inflammasome contributes to the development of atherosclerosis in animal models. Components of the NLRP3 inflammasome pathway such as interleukin-1ß can therapeutically be targeted. Associations of genetically determined inflammasome-mediated systemic inflammation with CVD and mortality in humans are unknown. METHODS AND RESULTS: We explored the association of genetic NLRP3 variants with prevalent CVD and cardiovascular mortality in 538 167 subjects on the individual participant level in an explorative gene-centric approach without performing multiple testing. Functional relevance of single-nucleotide polymorphisms on NLRP3 inflammasome activation has been evaluated in monocyte-enriched peripheral blood mononuclear cells (PBMCs). Genetic analyses identified the highly prevalent (minor allele frequency 39.9%) intronic NLRP3 variant rs10754555 to affect NLRP3 gene expression. rs10754555 carriers showed significantly higher C-reactive protein and serum amyloid A plasma levels. Carriers of the G allele showed higher NLRP3 inflammasome activation in isolated human PBMCs. In carriers of the rs10754555 variant, the prevalence of coronary artery disease was significantly higher as compared to non-carriers with a significant interaction between rs10754555 and age. Importantly, rs10754555 carriers had significantly higher risk for cardiovascular mortality during follow-up. Inflammasome inducers (e.g. urate, triglycerides, apolipoprotein C3) modulated the association between rs10754555 and mortality. CONCLUSION: The NLRP3 intronic variant rs10754555 is associated with increased systemic inflammation, inflammasome activation, prevalent coronary artery disease, and mortality. This study provides evidence for a substantial role of genetically driven systemic inflammation in CVD and highlights the NLRP3 inflammasome as a therapeutic target.


Subject(s)
Cardiovascular Diseases/mortality , Inflammasomes , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/genetics , Inflammation/genetics , Leukocytes, Mononuclear , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
12.
Sci Rep ; 11(1): 4605, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633217

ABSTRACT

To identify circulating proteins predictive of acute cardiovascular disease events in the general population, we performed a proteomic screen in plasma from asymptomatic individuals. A "Discovery cohort" of 25 individuals who subsequently incurred a cardiovascular event within 3 years (median age = 70 years, 80% male) was matched to 25 controls remaining event-free for > 5 years (median age = 72 years, 80% male). Plasma proteins were assessed by data independent acquisition mass spectrometry (DIA-MS). Associations with cardiovascular events were tested using Cox regression, adjusted for the New Zealand Cardiovascular Risk Score. Concentrations of leading protein candidates were subsequently measured with ELISAs in a larger (n = 151) independent subset. In the Discovery cohort, 76 plasma proteins were robustly quantified by DIA-MS, with 8 independently associated with cardiovascular events. These included (HR = hazard ratio [95% confidence interval] above vs below median): fibrinogen alpha chain (HR = 1.84 [1.19-2.84]); alpha-2-HS-glycoprotein (also called fetuin A) (HR = 1.86 [1.19-2.93]); clusterin isoform 2 (HR = 1.59 [1.06-2.38]); fibrinogen beta chain (HR = 1.55 [1.04-2.30]); hemoglobin subunit beta (HR = 1.49 [1.04-2.15]); complement component C9 (HR = 1.62 [1.01-2.59]), fibronectin isoform 3 (HR = 0.60 [0.37-0.99]); and lipopolysaccharide-binding protein (HR = 1.58 [1.00-2.49]). The proteins for which DIA-MS and ELISA data were correlated, fibrinogen and hemoglobin, were analyzed in an Extended cohort, with broader inclusion criteria and longer time to events, in which these two proteins were not associated with incident cardiovascular events. We have identified eight candidate proteins that may independently predict cardiovascular events occurring within three years in asymptomatic, low-to-moderate risk individuals, although these appear not to predict events beyond three years.


Subject(s)
Cardiovascular Diseases/blood , Fibrinogen/analysis , Hemoglobins/analysis , Aged , Cardiovascular Diseases/diagnosis , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Heart Disease Risk Factors , Humans , Male , Mass Spectrometry , Predictive Value of Tests , Proportional Hazards Models
13.
Heart Fail Rev ; 26(5): 1203-1217, 2021 09.
Article in English | MEDLINE | ID: mdl-32062825

ABSTRACT

Acute decompensated heart failure (ADHF) is associated with a high incidence of acute kidney injury (AKI), an abrupt loss of kidney function associated with a near doubling of mortality at 1 year. In addition to the direct threat acute HF itself poses to kidney function, the beneficial effects of commonly prescribed HF treatments must be weighed against their potentially adverse effects on glomerular perfusion. Consequently, there is an urgent need to identify early markers for AKI in ADHF to facilitate timely implementation of supportive measures to minimize kidney damage and improve outcomes. The recent recognition of the diagnostic potential of circulating microRNAs presents the potential to address this gap if microRNAs specific for AKI can be identified in serial plasma, serum and/or urine samples from well-phenotyped cohorts of ADHF patients, including a proportion with AKI. This review summarizes emerging circulating diagnostic and prognostic microRNA biomarkers (serum, plasma or urine) in HF and AKI.


Subject(s)
Acute Kidney Injury , Heart Failure , MicroRNAs , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Biomarkers , Heart Failure/diagnosis , Humans , Incidence
14.
Int J Mol Sci ; 21(12)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560137

ABSTRACT

Hydrogen sulfide (H2S) is recognized as an endogenous gaseous signaling molecule generated by cystathionine γ-lyase (CSE) in cardiovascular tissues. H2S up-regulation has been shown to reduce ischemic injury, and H2S donors are cardioprotective in rodent models when administered concurrent with myocardial ischemia. We evaluated the potential utility of H2S therapy in ameliorating cardiac remodeling with administration delayed until 2 h post-infarction in mice with or without cystathionine γ-lyase gene deletion (CSE-/-). The slow-release H2S donor, GYY4137, was administered from 2 h after surgery and daily for 28 days following myocardial infarction (MI) induced by coronary artery ligation, comparing responses in CSE-/- with wild-type (WT) mice (n = 5-10/group/genotype). Measures of cardiac function and expression of key genes associated with cardiac hypertrophy, fibrosis, and apoptosis were documented in atria, ventricle, and kidney tissues. Post-MI GYY4137 administration reduced infarct area and restored cardiac function, accompanied by reduction of the elevated ventricular expression of genes mediating cardiac remodeling to near-normal levels. Few differences between WT and CSE-/- mice were observed, except CSE-/- mice had higher blood pressures, and higher atrial Mir21a expression across all treatment groups. These findings suggest endogenous CSE gene deletion does not substantially exacerbate the long-term response to MI. Moreover, the H2S donor GYY4137 administered after onset of MI preserves cardiac function and protects against adverse cardiac remodeling in both WT and CSE-deficient mice.


Subject(s)
Cystathionine gamma-Lyase/genetics , Hydrogen Sulfide/metabolism , Morpholines/administration & dosage , Myocardial Infarction/drug therapy , Organothiophosphorus Compounds/administration & dosage , Animals , Disease Models, Animal , Heart Function Tests/drug effects , Male , Mice , Mice, Knockout , MicroRNAs/genetics , Morpholines/pharmacology , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Organothiophosphorus Compounds/pharmacology , Recovery of Function , Up-Regulation
15.
Sci Rep ; 9(1): 12108, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31431677

ABSTRACT

Natriuretic Peptides (NP) are important in maintaining normal cardiac and metabolic status and have been used to predict cardiovascular events. Whether plasma concentrations of NP products within the normal range reflect cardio-metabolic health is unknown. Plasma NTproANP, NTproBNP and NTproCNP and their bioactive counterparts were measured in a random sample of 348 community dwellers aged 49-51 yr without heart disease and associations sought with established vascular risk factors, echocardiographic indices and a genetic variant previously linked with BNP. Stratified by sex, each of ten vascular risk factors were positively associated with NTproCNP whereas associations with NTproBNP and NTproANP were all negative. In both sexes, higher plasma NTproCNP was associated with higher arterial elastance, lower LV stroke volume and lower LV end diastolic volume. Exactly opposite associations were found with plasma NTproBNP or NTproANP. Sex specific differences were identified: positive association of NTproBNP with LV end systolic volume and the negative association with LV elastance were found only in males. The genetic variant rs198358 was independently associated with NTproBNP but not with NTproANP. In conclusion, higher NTproCNP is likely to be an adaptive response to impaired LV relaxation whereas genetic factors likely contribute to higher NTproBNP and improved cardio-metabolic health at midlife.


Subject(s)
Atrial Natriuretic Factor/blood , Heart Diseases/blood , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, C-Type/blood , Peptide Fragments/blood , Cardiovascular System/metabolism , Cardiovascular System/pathology , Female , Heart Diseases/epidemiology , Heart Diseases/pathology , Humans , Male , Middle Aged , Natriuretic Peptides/blood , Risk Factors , Sex Characteristics
16.
J Am Coll Cardiol ; 73(11): 1300-1313, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30898206

ABSTRACT

BACKGROUND: Clinicians need improved tools to better identify nonacute heart failure with preserved ejection fraction (HFpEF). OBJECTIVES: The purpose of this study was to derive and validate circulating microRNA signatures for nonacute heart failure (HF). METHODS: Discovery and validation cohorts (N = 1,710), comprised 903 HF and 807 non-HF patients from Singapore and New Zealand (NZ). MicroRNA biomarker panel discovery in a Singapore cohort (n = 546) was independently validated in a second Singapore cohort (Validation 1; n = 448) and a NZ cohort (Validation 2; n = 716). RESULTS: In discovery, an 8-microRNA panel identified HF with an area under the curve (AUC) 0.96, specificity 0.88, and accuracy 0.89. Corresponding metrics were 0.88, 0.66, and 0.77 in Validation 1, and 0.87, 0.58, and 0.74 in Validation 2. Combining microRNA panels with N-terminal pro-B-type natriuretic peptide (NT-proBNP) clearly improved specificity and accuracy from AUC 0.96, specificity 0.91, and accuracy 0.90 for NT-proBNP alone to corresponding metrics of 0.99, 0.99, and 0.93 in the discovery and 0.97, 0.96, and 0.93 in Validation 1. The 8-microRNA discovery panel distinguished HFpEF from HF with reduced ejection fraction with AUC 0.81, specificity 0.66, and accuracy 0.72. Corresponding metrics were 0.65, 0.41, and 0.56 in Validation 1 and 0.65, 0.41, and 0.62 in Validation 2. For phenotype categorization, combined markers achieved AUC 0.87, specificity 0.75, and accuracy 0.77 in the discovery with corresponding metrics of 0.74, 0.59, and 0.67 in Validation 1 and 0.72, 0.52, and 0.68 in Validation 2, as compared with NT-proBNP alone of AUC 0.71, specificity 0.46, and accuracy 0.62 in the discovery; with corresponding metrics of 0.72, 0.44, and 0.57 in Validation 1 and 0.69, 0.48, and 0.66 in Validation 2. Accordingly, false negative (FN) (81% Singapore and all NZ FN cases were HFpEF) as classified by a guideline-endorsed NT-proBNP ruleout threshold, were correctly reclassified by the 8-microRNA panel in the majority (72% and 88% of FN in Singapore and NZ, respectively) of cases. CONCLUSIONS: Multi-microRNA panels in combination with NT-proBNP are highly discriminatory and improved specificity and accuracy in identifying nonacute HF. These findings suggest potential utility in the identification of nonacute HF, where clinical assessment, imaging, and NT-proBNP may not be definitive, especially in HFpEF.


Subject(s)
Circulating MicroRNA/blood , Heart Failure , MicroRNAs/blood , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Aged , Area Under Curve , Biomarkers/blood , Echocardiography, Doppler/methods , Female , Gene Expression Profiling/methods , Heart Failure/blood , Heart Failure/classification , Heart Failure/physiopathology , Humans , Male , Middle Aged , New Zealand , Principal Component Analysis/methods , Singapore , Stroke Volume , Ventricular Function, Left
17.
N Z Med J ; 131(1480): 81-89, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30116069

ABSTRACT

Precision medicine seeks to draw on data from both individuals and populations across disparate domains to influence and support diagnosis, management and prevention in healthcare at the level of the individual patient and their family/whanau. Central to this initiative is incorporating the effects of the inherent variation that lies within genomes and can influence health outcomes. Identifying and interpreting such variation requires an accurate, valid and representative dataset to firstly define what variants are present and then assess the potential relevance for the health of a person, their family/whanau and the wider community to which they belong. Globally the variation embedded within genomes differs enormously and has been shaped by the size, constitution, historical origins and evolutionary history of their source populations. Maori, and more broadly Pacific peoples, differ substantially in terms of genomic variation compared to the more closely studied European and Asian populations. In the absence of accurate genomic information from Maori and Pacific populations, the precise interpretation of genomic data and the success and benefits of genomic medicine will be disproportionately less for those Maori and Pacific peoples. In this viewpoint article we, as a group of healthcare professionals, researchers and scientists, present a case for assembling genomic resources that catalogue the characteristics of the genomes of New Zealanders, with an emphasis on peoples of Maori and Polynesian ancestry, as a healthcare imperative. In proposing the creation of these resources, we note that their governance and management must be led by iwi and Maori and Pacific representatives. Assembling a genomic resource must be informed by cultural concepts and values most especially understanding that, at a physical and spiritual level, whakapapa is embodied within the DNA of a person. Therefore DNA and genomic data that connects to whakapapa (genealogy) is considered a taonga (something precious and significant), and its storage, utilisation and interpretation is a culturally significant activity. Furthermore, such resources are not proposed to primarily enable comparisons between those with Maori and broader Pacific ancestries and other Aotearoa peoples but to place an understanding of the genetic contributors to their health outcomes in a valid context. Ongoing oversight and governance of such taonga by Maori and Pacific representatives will maximise hauora (health) while also minimising the risk of misuse of this information.


Subject(s)
Genomics , Healthcare Disparities/ethnology , Precision Medicine , Genetics, Medical , Humans , Native Hawaiian or Other Pacific Islander/genetics , New Zealand/ethnology
18.
BMC Cardiovasc Disord ; 18(1): 169, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111293

ABSTRACT

BACKGROUND: Development of collateral circulation in coronary artery disease is cardio-protective. A key process in forming new blood vessels is attraction to occluded arteries of monocytes with their subsequent activation as macrophages. In patients from a prospectively recruited post-acute coronary syndromes cohort we investigated the prognostic performance of three products of activated macrophages, soluble vascular endothelial growth factor (VEGF) receptors (sFlt-1 and sKDR) and pterins, alongside genetic variants in VEGF receptor genes, VEGFR-1 and VEGFR-2. METHODS: Baseline levels of sFlt-1 (VEGFR1), sKDR (VEGFR2) and pterins were measured in plasma samples from subgroups (n = 513; 211; 144, respectively) of the Coronary Disease Cohort Study (CDCS, n = 2067). DNA samples from the cohort were genotyped for polymorphisms from the VEGFR-1 gene SNPs (rs748252 n = 2027, rs9513070 n = 2048) and VEGFR-2 gene SNPs (rs2071559 n = 2050, rs2305948 n = 2066, rs1870377 n = 2042). RESULTS: At baseline, levels of sFlt-1 were significantly correlated with age, alcohol consumption, NTproBNP, BNP and other covariates relevant to cardiovascular pathophysiology. Total neopterin levels were associated with alcohol consumption at baseline. 7,8 dihydroneopterin was associated with BMI. The A allele of VEGFR-2 variant rs1870377 was associated with higher plasma sFlt-1 and lower levels of sKDR at baseline. Baseline plasma sFlt-1 was univariately associated with all cause mortality with (p < 0.001) and in a Cox's proportional hazards regression model sFlt-1 and pterins were both associated with mortality independent of established predictors (p < 0.027). CONCLUSIONS: sFlt-1 and pterins may have potential as prognostic biomarkers in acute coronary syndromes patients. Genetic markers from VEGF system genes warrant further investigation as markers of levels of VEGF system components in these patients. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry. ACTRN12605000431628 . 16 September 2005, Retrospectively registered.


Subject(s)
Acute Coronary Syndrome/blood , Acute Coronary Syndrome/genetics , Polymorphism, Single Nucleotide , Pterins/blood , Vascular Endothelial Growth Factor Receptor-1/blood , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-2/blood , Vascular Endothelial Growth Factor Receptor-2/genetics , Acute Coronary Syndrome/diagnostic imaging , Acute Coronary Syndrome/mortality , Age Factors , Aged , Alcohol Drinking/adverse effects , Coronary Angiography , Female , Genetic Association Studies , Genetic Markers , Genetic Predisposition to Disease , Humans , Macrophage Activation , Macrophages/metabolism , Male , Phenotype , Predictive Value of Tests , Prognosis , Risk Factors
19.
Sci Rep ; 8(1): 7548, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765130

ABSTRACT

The pathophysiology of stress cardiomyopathy (SCM), also known as takotsubo syndrome, is poorly understood. SCM usually occurs sporadically, often in association with a stressful event, but clusters of cases are reported after major natural disasters. There is some evidence that this is a familial condition. We have examined three possible models for an underlying genetic predisposition to SCM. Our primary study cohort consists of 28 women who suffered SCM as a result of two devastating earthquakes that struck the city of Christchurch, New Zealand, in 2010 and 2011. To seek possible underlying genetic factors we carried out exome analysis, genotyping array analysis, and array comparative genomic hybridization on these subjects. The most striking finding was the observation of a markedly elevated rate of rare, heterogeneous copy number variants (CNV) of uncertain clinical significance (in 12/28 subjects). Several of these CNVs impacted on genes of cardiac relevance including RBFOX1, GPC5, KCNRG, CHODL, and GPBP1L1. There is no physical overlap between the CNVs, and the genes they impact do not appear to be functionally related. The recognition that SCM predisposition may be associated with a high rate of rare CNVs offers a novel perspective on this enigmatic condition.


Subject(s)
DNA Copy Number Variations , Gene Regulatory Networks , Genotyping Techniques/methods , Takotsubo Cardiomyopathy/genetics , Comparative Genomic Hybridization , Earthquakes , Female , Genetic Predisposition to Disease , Glypicans/genetics , Humans , Lectins, C-Type/genetics , Membrane Proteins/genetics , New Zealand , Oligonucleotide Array Sequence Analysis , Potassium Channels/genetics , RNA Splicing Factors/genetics , Exome Sequencing
20.
Eur Heart J ; 39(20): 1770-1780, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29390051

ABSTRACT

Aims: Whether prevalence and mortality of patients with heart failure with preserved or mid-range (40-49%) ejection fraction (HFpEF and HFmREF) are similar to those of heart failure with reduced ejection fraction (HFrEF), as reported in some epidemiologic studies, remains highly controversial. We determined and compared characteristics and outcomes for patients with HFpEF, HFmREF, and HFrEF in a prospective, international, multi-ethnic population. Methods and results: Prospective multi-centre longitudinal study in New Zealand (NZ) and Singapore. Patients with HF were assessed at baseline and followed over 2 years. The primary outcome was death from any cause. Secondary outcome was death and HF hospitalization. Cox proportional hazards models were used to compare outcomes for patients with HFpEF, HFmrEF, and HFrEF. Of 2039 patients enrolled, 28% had HFpEF, 13% HFmrEF, and 59% HFrEF. Compared with HFrEF, patients with HFpEF were older (62 vs. 72 years), more commonly female (17% vs. 48%), and more likely to have a history of hypertension (61% vs. 78%) but less likely to have coronary artery disease (55% vs. 41%). During 2 years of follow-up, 343 (17%) patients died. Adjusting for age, sex, and clinical risk factors, patients with HFpEF had a lower risk of death compared with those with HFrEF (hazard ratio 0.62, 95% confidence interval 0.46-0.85). Plasma (NT-proBNP) was similarly related to mortality in both HFpEF, HFmrEF, and HFrEF independent of the co-variates listed and of ejection fraction. Results were similar for the composite endpoint of death or HF and were consistent between Singapore and NZ. Conclusion: These prospective multinational data showed that the prevalence of HFpEF within the HF population was lower than HFrEF. Death rate was comparable in HFpEF and HFmrEF and lower than in HFrEF. Plasma levels of NT-proBNP were independently and similarly predictive of death in the three HF phenotypes. Trial Registration: Australian New Zealand Clinical Trial Registry (ACTRN12610000374066).


Subject(s)
Heart Failure/mortality , Stroke Volume/physiology , Age Factors , Aged , Aged, 80 and over , Biomarkers/blood , Cohort Studies , Echocardiography , Female , Follow-Up Studies , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , New Zealand/epidemiology , Peptide Fragments/blood , Prospective Studies , Risk Factors , Sex Factors , Singapore/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...