Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958470

ABSTRACT

BACKGROUND: The Cosmos sulphureus Cav. plant is studied for its high polyphenolic content with antioxidant properties. Its flowers, rich in phenolic acids, flavonoids, and tannins, hold promise as antioxidants in food preservation. The inclusion of these compounds in chickpea-based coatings with a previously studied preservative effect would be an excellent option as a food preservation method and microencapsulation addresses challenges like dispersion and degradation of polyphenols in the coating. The objective of this research was to evaluate the in vitro antioxidant activity of Cosmos sulphureus leaves, seed, and flower extracts and explore the protective effects of chickpea-based coatings containing microcapsules of flower polyphenolic extract on the chemical quality of stored roasted sunflower seeds during storage. RESULTS: The ethanolic leaf extract exhibited the highest antiradical activity, followed by the aqueous flower extract. After a storage period of 15 days, at 40 °C, the chickpea-based coatings effectively delayed lipid oxidation in the roasted sunflowers seeds, and the inclusion of polyphenolic microcapsules with 0.01% extract (SMC 0.01%) in the coating significantly improved the protective effect. By day 15 of storage, SMC 0.01% showed comparable peroxide value, conjugated dienes, and linoleic acid content to samples containing the synthetic antioxidant BHT (butylated hydroxytoluene). Samples that only contained chickpea-based coating and coating with polyphenolic microcapsules with 0.005% extract exhibited significantly greater reduction in fatty acid content compared to the 0.01% SMC treatment. CONCLUSION: The chickpea-based coating with polyphenolic microcapsules demonstrated antioxidant activity akin to synthetic BHT, offering a promising biopackaging solution for lipid-rich foods like roasted sunflower seeds. © 2024 Society of Chemical Industry.

2.
J Food Sci ; 88(4): 1237-1252, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36789846

ABSTRACT

The objective of this study was to evaluate the protective effect of a chickpea-based edible coating with the addition of polyphenols on the chemical, microbiological, and sensory quality of roasted sunflower seeds throughout storage. Four different samples were prepared: roasted sunflower seeds (control sample, SF-C), roasted sunflower seeds with BHT (SF-BHT), roasted sunflower seeds with chickpea-based coating (SF-CCs), and roasted sunflower seeds with chickpea-based coating with chickpea polyphenolic extract (SF-CCPE). The samples were stored for 60 days at room temperature, and their chemical, microbiological, and sensory parameters were analyzed. The acceptability of fresh samples was also studied. The use of chickpea-based coatings retarded the lipid oxidation process efficiently, but the inclusion of chickpea polyphenols in the coating enhanced the protective effect. At 60th day of storage, no statistically significant differences were found between SF-CCPE and SF-BHT in relation to peroxides and conjugated dienes values, saturated/unsaturated ratio, and hexanal content. Linoleic acid content was reduced significantly more in SF-CCs than SF-CCPE. The addition of chickpea coating with chickpea antioxidants did not modify the flavor of the sunflower seeds and was the most accepted treatment by the consumer. The formation of undesirable flavors (cardboard and oxidized) was less in SF-CC, SF-CCPE, and SF-BHT without finding significant differences between these treatments. None of the samples presented microbiological contamination or an increase in bacteria, yeast, and molds during storage. The chickpea-based coating was able to retard lipid oxidation in roasted sunflower seeds, proving to be a good alternative as a natural method to preserve foods with high lipid content. PRACTICAL APPLICATION: Discarded chickpeas and chickpea husks constitute byproducts from the chickpea industry. The grain husks are currently discarded or marketed at a very low cost, constituting a novel residue with antioxidant properties. Considering the growing interest in sustainability and the circular economy, this investigation proposes the utilization of nutritional materials to prepare edible coatings. The chickpea-based coatings loaded with polyphenol extract (obtained from the husk of chickpea) demonstrated to have a protective effect against lipid oxidation process in sunflower seeds, which represent a good alternative to be used for the food industry to increase the shelf life of lipid foods.


Subject(s)
Cicer , Edible Films , Helianthus , Food Preservation/methods , Polyphenols , Taste , Antioxidants , Seeds , Plant Extracts , Lipids
3.
J Food Sci ; 86(1): 61-67, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33336405

ABSTRACT

The aim of this study was to evaluate the protective effect of biodegradable packages made with chickpea flour on the oxidation of sunflower oil. Chickpea flour films were prepared using the casting technique. To study the influence of storage time on films properties, the chickpea flour films were stored during 60 days at 25 °C and 52% relative humidity. In addition, sunflower oil samples were packaged in chickpea flour packages (CPs) and stored for 60 days at 25 °C. Lipid oxidation indicators were evaluated. The results showed that puncture force and redness values (a*) of chickpea films did not change significantly during storage. Tensile strength, Young's modulus (YM), and yellowness (b*) increased and moisture content (MC), elongation (%E), solubility (%S), water vapor permeability (WVP), and luminosity (L*) decreased. Microscopic images showed the presence of a few cracks in the film network at storage day 60. Conjugated dienes and peroxide value increased less for sunflower oil stored in high-barrier plastic pouches and CPs during storage than the control treatment. CPs helped to preserve the chemical quality of sunflower oil samples, proving to be a promising alternative to develop biodegradable packaging to be used in oily food preservation. PRACTICAL APPLICATION: Discarded chickpea grains are those split and different color grains that are separated from marketable grains, and represent an industrial byproduct. These grains are currently used for feed, constituting a nutritive biomass of low commercial value. Chickpea flour is a potential material for making biodegradable films. This strategy allows adding value to the chickpea industry, transforming a byproduct into a raw material with the potential to develop economical food packaging material. The use of chickpea packages to preserve sunflower oil may be an alternative to pack vegetable oil or high lipid content food, allowing the use reduction of nonbiodegradable pouches.


Subject(s)
Cicer , Food Packaging/instrumentation , Food Preservation/methods , Sunflower Oil , Elastic Modulus , Food Packaging/methods , Mechanical Phenomena , Oxidation-Reduction , Permeability , Solubility , Steam , Tensile Strength , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...