Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 7378, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191740

ABSTRACT

The escape of mitochondrial double-stranded dsRNA (mt-dsRNA) into the cytosol has been recently linked to a number of inflammatory diseases. Here, we report that the release of mt-dsRNA into the cytosol is a general feature of senescent cells and a critical driver of their inflammatory secretome, known as senescence-associated secretory phenotype (SASP). Inhibition of the mitochondrial RNA polymerase, the dsRNA sensors RIGI and MDA5, or the master inflammatory signaling protein MAVS, all result in reduced expression of the SASP, while broadly preserving other hallmarks of senescence. Moreover, senescent cells are hypersensitized to mt-dsRNA-driven inflammation due to their reduced levels of PNPT1 and ADAR1, two proteins critical for mitigating the accumulation of mt-dsRNA and the inflammatory potency of dsRNA, respectively. We find that mitofusin MFN1, but not MFN2, is important for the activation of the mt-dsRNA/MAVS/SASP axis and, accordingly, genetic or pharmacologic MFN1 inhibition attenuates the SASP. Finally, we report that senescent cells within fibrotic and aged tissues present dsRNA foci, and inhibition of mitochondrial RNA polymerase reduces systemic inflammation associated to senescence. In conclusion, we uncover the mt-dsRNA/MAVS/MFN1 axis as a key driver of the SASP and we identify novel therapeutic strategies for senescence-associated diseases.


Subject(s)
Cellular Senescence , Cytosol , Inflammation , Mitochondria , RNA, Double-Stranded , RNA, Double-Stranded/metabolism , Humans , Cytosol/metabolism , Mitochondria/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Animals , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Senescence-Associated Secretory Phenotype , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Signal Transduction
2.
Nat Metab ; 5(9): 1544-1562, 2023 09.
Article in English | MEDLINE | ID: mdl-37563469

ABSTRACT

Resistance of melanoma to targeted therapy and immunotherapy is linked to metabolic rewiring. Here, we show that increased fatty acid oxidation (FAO) during prolonged BRAF inhibitor (BRAFi) treatment contributes to acquired therapy resistance in mice. Targeting FAO using the US Food and Drug Administration-approved and European Medicines Agency-approved anti-anginal drug ranolazine (RANO) delays tumour recurrence with acquired BRAFi resistance. Single-cell RNA-sequencing analysis reveals that RANO diminishes the abundance of the therapy-resistant NGFRhi neural crest stem cell subpopulation. Moreover, by rewiring the methionine salvage pathway, RANO enhances melanoma immunogenicity through increased antigen presentation and interferon signalling. Combination of RANO with anti-PD-L1 antibodies strongly improves survival by increasing antitumour immune responses. Altogether, we show that RANO increases the efficacy of targeted melanoma therapy through its effects on FAO and the methionine salvage pathway. Importantly, our study suggests that RANO could sensitize BRAFi-resistant tumours to immunotherapy. Since RANO has very mild side-effects, it might constitute a therapeutic option to improve the two main strategies currently used to treat metastatic melanoma.


Subject(s)
Melanoma , United States , Animals , Mice , Ranolazine/pharmacology , Ranolazine/therapeutic use , Melanoma/drug therapy , Melanoma/metabolism , Immunotherapy , Protein Kinase Inhibitors/pharmacology , Methionine
3.
Cell Death Dis ; 14(3): 201, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932059

ABSTRACT

Multiciliated cells (MCCs) project dozens to hundreds of motile cilia from their apical surface to promote the movement of fluids or gametes in the mammalian brain, airway or reproductive organs. Differentiation of MCCs requires the sequential action of the Geminin family transcriptional activators, GEMC1 and MCIDAS, that both interact with E2F4/5-DP1. How these factors activate transcription and the extent to which they play redundant functions remains poorly understood. Here, we demonstrate that the transcriptional targets and proximal proteomes of GEMC1 and MCIDAS are highly similar. However, we identified distinct interactions with SWI/SNF subcomplexes; GEMC1 interacts primarily with the ARID1A containing BAF complex while MCIDAS interacts primarily with BRD9 containing ncBAF complexes. Treatment with a BRD9 inhibitor impaired MCIDAS-mediated activation of several target genes and compromised the MCC differentiation program in multiple cell based models. Our data suggest that the differential engagement of distinct SWI/SNF subcomplexes by GEMC1 and MCIDAS is required for MCC-specific transcriptional regulation and mediated by their distinct C-terminal domains.


Subject(s)
Gene Expression Regulation , Nuclear Proteins , Animals , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Cell Differentiation/genetics , Mammals
4.
Cancer Discov ; 13(2): 410-431, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36302218

ABSTRACT

Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DC) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of IFN signaling, enhanced MHC class I machinery, and presentation of senescence-associated self-peptides that can activate CD8 T cells. In the context of cancer, immunization with senescent cancer cells elicits strong antitumor protection mediated by DCs and CD8 T cells. Interestingly, this protection is superior to immunization with cancer cells undergoing immunogenic cell death. Finally, the induction of senescence in human primary cancer cells also augments their ability to activate autologous antigen-specific tumor-infiltrating CD8 lymphocytes. Our study indicates that senescent cancer cells can be exploited to develop efficient and protective CD8-dependent antitumor immune responses. SIGNIFICANCE: Our study shows that senescent cells are endowed with a high immunogenic potential-superior to the gold standard of immunogenic cell death. We harness these properties of senescent cells to trigger efficient and protective CD8-dependent antitumor immune responses. See related article by Chen et al., p. 432. This article is highlighted in the In This Issue feature, p. 247.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Humans , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , Cellular Senescence , Tumor Microenvironment
5.
Nature ; 611(7936): 603-613, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36352230

ABSTRACT

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.


Subject(s)
Colorectal Neoplasms , Neoplasm Metastasis , Neoplasm Proteins , Neoplasm Recurrence, Local , Neoplasm, Residual , Receptors, Cell Surface , Animals , Humans , Mice , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Disease Progression , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/therapy , Neoplasm, Residual/genetics , Neoplasm, Residual/pathology , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasm Metastasis/prevention & control , Neoplasm Metastasis/therapy , Disease Models, Animal , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Neoadjuvant Therapy , Immunotherapy
7.
Genome Med ; 13(1): 168, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702310

ABSTRACT

BACKGROUND: In spite of many years of research, our understanding of the molecular bases of Alzheimer's disease (AD) is still incomplete, and the medical treatments available mainly target the disease symptoms and are hardly effective. Indeed, the modulation of a single target (e.g., ß-secretase) has proven to be insufficient to significantly alter the physiopathology of the disease, and we should therefore move from gene-centric to systemic therapeutic strategies, where AD-related changes are modulated globally. METHODS: Here we present the complete characterization of three murine models of AD at different stages of the disease (i.e., onset, progression and advanced). We combined the cognitive assessment of these mice with histological analyses and full transcriptional and protein quantification profiling of the hippocampus. Additionally, we derived specific Aß-related molecular AD signatures and looked for drugs able to globally revert them. RESULTS: We found that AD models show accelerated aging and that factors specifically associated with Aß pathology are involved. We discovered a few proteins whose abundance increases with AD progression, while the corresponding transcript levels remain stable, and showed that at least two of them (i.e., lfit3 and Syt11) co-localize with Aß plaques in the brain. Finally, we found two NSAIDs (dexketoprofen and etodolac) and two anti-hypertensives (penbutolol and bendroflumethiazide) that overturn the cognitive impairment in AD mice while reducing Aß plaques in the hippocampus and partially restoring the physiological levels of AD signature genes to wild-type levels. CONCLUSIONS: The characterization of three AD mouse models at different disease stages provides an unprecedented view of AD pathology and how this differs from physiological aging. Moreover, our computational strategy to chemically revert AD signatures has shown that NSAID and anti-hypertensive drugs may still have an opportunity as anti-AD agents, challenging previous reports.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Proteomics/methods , Transcriptome , Aging , Amyloid beta-Peptides , Animals , Brain/metabolism , Cognitive Dysfunction , Disease Models, Animal , Drug Discovery , Female , Gene Expression Regulation, Neoplastic , Gene Knock-In Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/metabolism
8.
Cell Rep ; 32(5): 107983, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32755577

ABSTRACT

The Tousled-like kinases 1 and 2 (TLK1/2) control histone deposition through the ASF1 histone chaperone and influence cell cycle progression and genome maintenance, yet the mechanisms underlying TLK-mediated genome stability remain uncertain. Here, we show that TLK loss results in severe chromatin decompaction and altered genome accessibility, particularly affecting heterochromatic regions. Failure to maintain heterochromatin increases spurious transcription of repetitive elements and induces features of alternative lengthening of telomeres (ALT). TLK depletion culminates in a cGAS-STING-TBK1-mediated innate immune response that is independent of replication-stress signaling and attenuated by the depletion of factors required to produce extra-telomeric DNA. Analysis of human cancers reveals that chromosomal instability correlates with high TLK2 and low STING levels in many cohorts. Based on these findings, we propose that high TLK levels contribute to immune evasion in chromosomally unstable and ALT+ cancers.


Subject(s)
Immunity, Innate , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Telomere Homeostasis , Cell Line, Tumor , Heterochromatin/metabolism , Humans , Membrane Proteins/metabolism , Neoplasms/enzymology , Neoplasms/immunology , Nucleotidyltransferases/metabolism , Recombination, Genetic/genetics , Telomere/metabolism
9.
Microorganisms ; 8(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110976

ABSTRACT

Campylobacter jejuni causes campylobacteriosis, a bacterial gastroenteritis with high incidence worldwide. Moreover, C. jejuni infection can trigger the polyneuropathic disorder denominated Guillain-Barré syndrome (GBS). The C. jejuni strains that can elicit GBS carry either wlaN or cgtB, coding both genes for a ß-1,3-galactosyltransferase enzyme that is required for the production of sialylated lipooligosaccharide (LOSSIAL). We described a differential prevalence of the genes wlaN and cgtB in C. jejuni isolates from three different ecological niches: humans, broiler chickens, and wild birds. The distribution of both genes, which is similar between broiler chicken and human isolates and distinct when compared to the wild bird isolates, suggests a host-dependent distribution. Moreover, the prevalence of the wlaN and cgtB genes seems to be restricted to some clonal complexes. Gene sequencing identified the presence of new variants of the G- homopolymeric tract within the wlaN gene. Furthermore, we detected two variants of a G rich region within the cgtB gene, suggesting that, similarly to wlaN, the G-tract in the cgtB gene mediates the phase variation control of cgtB expression. Caco-2 cell invasion assays indicate that there is no evident correlation between the production of LOSSIAL and the ability to invade eukaryotic cells.

10.
Genome Biol ; 21(1): 31, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32033589

ABSTRACT

The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands-or even millions-of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.


Subject(s)
Data Science/methods , Genomics/methods , RNA-Seq/methods , Single-Cell Analysis/methods , Animals , Humans
11.
Sci Adv ; 4(8): eaat4985, 2018 08.
Article in English | MEDLINE | ID: mdl-30101194

ABSTRACT

DNA sequence and epigenetic information embedded in chromatin must be faithfully duplicated and transmitted to daughter cells during cell division. However, how chromatin assembly and DNA replication are integrated remains unclear. We examined the contribution of the Tousled-like kinases 1 and 2 (TLK1/TLK2) to chromatin assembly and maintenance of replication fork integrity. We show that TLK activity is required for DNA replication and replication-coupled nucleosome assembly and that lack of TLK activity leads to replication fork stalling and the accumulation of single-stranded DNA, a phenotype distinct from ASF1 depletion. Consistent with these results, sustained TLK depletion gives rise to replication-dependent DNA damage and p53-dependent cell cycle arrest in G1. We find that deficient replication-coupled de novo nucleosome assembly renders replication forks unstable and highly dependent on the ATR and CHK1 checkpoint kinases, as well as poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) activity, to avoid collapse. Human cancer data revealed frequent up-regulation of TLK genes and an association with poor patient outcome in multiple types of cancer, and depletion of TLK activity leads to increased replication stress and DNA damage in a panel of cancer cells. Our results reveal a critical role for TLKs in chromatin replication and suppression of replication stress and identify a synergistic lethal relationship with checkpoint signaling and PARP that could be exploited in treatment of a broad range of cancers.


Subject(s)
DNA Replication/drug effects , Neoplasms/pathology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Synthetic Lethal Mutations , Cell Cycle Checkpoints/drug effects , Chromatin/genetics , DNA Damage , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Phosphorylation , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Tumor Cells, Cultured
12.
Nature ; 554(7693): 538-543, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29443964

ABSTRACT

Most patients with colorectal cancer die as a result of the disease spreading to other organs. However, no prevalent mutations have been associated with metastatic colorectal cancers. Instead, particular features of the tumour microenvironment, such as lack of T-cell infiltration, low type 1 T-helper cell (TH1) activity and reduced immune cytotoxicity or increased TGFß levels predict adverse outcomes in patients with colorectal cancer. Here we analyse the interplay between genetic alterations and the tumour microenvironment by crossing mice bearing conditional alleles of four main colorectal cancer mutations in intestinal stem cells. Quadruple-mutant mice developed metastatic intestinal tumours that display key hallmarks of human microsatellite-stable colorectal cancers, including low mutational burden, T-cell exclusion and TGFß-activated stroma. Inhibition of the PD-1-PD-L1 immune checkpoint provoked a limited response in this model system. By contrast, inhibition of TGFß unleashed a potent and enduring cytotoxic T-cell response against tumour cells that prevented metastasis. In mice with progressive liver metastatic disease, blockade of TGFß signalling rendered tumours susceptible to anti-PD-1-PD-L1 therapy. Our data show that increased TGFß in the tumour microenvironment represents a primary mechanism of immune evasion that promotes T-cell exclusion and blocks acquisition of the TH1-effector phenotype. Immunotherapies directed against TGFß signalling may therefore have broad applications in treating patients with advanced colorectal cancer.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Immune Evasion , Immunotherapy , Neoplasm Metastasis/genetics , Neoplasm Metastasis/immunology , Transforming Growth Factor beta/immunology , Alleles , Animals , Cell Differentiation/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Disease Models, Animal , Drug Synergism , Female , Humans , Immune Evasion/drug effects , Intestinal Mucosa/metabolism , Intestines/drug effects , Intestines/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Male , Mice , Mutation , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Transforming Growth Factor beta/antagonists & inhibitors , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
13.
G3 (Bethesda) ; 8(4): 1205-1214, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29467187

ABSTRACT

Single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) are found at different rates in human cancer. To determine if these genetic lesions appear in Drosophila tumors we have sequenced the genomes of 17 malignant neoplasms caused by mutations in l(3)mbt, brat, aurA, or lgl We have found CNVs and SNPs in all the tumors. Tumor-linked CNVs range between 11 and 80 per sample, affecting between 92 and 1546 coding sequences. CNVs are in average less frequent in l(3)mbt than in brat lines. Nearly half of the CNVs fall within the 10 to 100Kb range, all tumor samples contain CNVs larger that 100 Kb and some have CNVs larger than 1Mb. The rates of tumor-linked SNPs change more than 20-fold depending on the tumor type: at late time points brat, l(3)mbt, and aurA and lgl lines present median values of SNPs/Mb of exome of 0.16, 0.48, and 3.6, respectively. Higher SNP rates are mostly accounted for by C > A transversions, which likely reflect enhanced oxidative stress conditions in the affected tumors. Both CNVs and SNPs turn over rapidly. We found no evidence for selection of a gene signature affected by CNVs or SNPs in the cohort. Altogether, our results show that the rates of CNVs and SNPs, as well as the distribution of CNV sizes in this cohort of Drosophila tumors are well within the range of those reported for human cancer. Genome instability is therefore inherent to Drosophila malignant neoplastic growth at a variable extent that is tumor type dependent.


Subject(s)
Brain Neoplasms/genetics , Drosophila melanogaster/genetics , Genomic Instability , Aging/pathology , Animals , Cell Line , DNA Copy Number Variations/genetics , Humans , Larva/genetics , Polymorphism, Single Nucleotide/genetics
14.
Cell Stem Cell ; 20(6): 801-816.e7, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28285904

ABSTRACT

Highly proliferative Lgr5+ stem cells maintain the intestinal epithelium and are thought to be largely homogeneous. Although quiescent intestinal stem cell (ISC) populations have been described, the identity and features of such a population remain controversial. Here we report unanticipated heterogeneity within the Lgr5+ ISC pool. We found that expression of the RNA-binding protein Mex3a labels a slowly cycling subpopulation of Lgr5+ ISCs that contribute to all intestinal lineages with distinct kinetics. Single-cell transcriptome profiling revealed that Lgr5+ cells adopt two discrete states, one of which is defined by a Mex3a expression program and relatively low levels of proliferation genes. During homeostasis, Mex3a+ cells continually shift into the rapidly dividing, self-renewing ISC pool. Chemotherapy and radiation preferentially target rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, helping to promote regeneration of the intestinal epithelium following toxic insults. Thus, Mex3a defines a reserve-like ISC population within the Lgr5+ compartment.


Subject(s)
Cell Proliferation/physiology , Intestinal Mucosa/metabolism , RNA-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Stem Cells/metabolism , Animals , Intestinal Mucosa/cytology , Mice , Mice, Transgenic , RNA-Binding Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Stem Cells/cytology
15.
Nature ; 541(7635): 41-45, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27974793

ABSTRACT

The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44bright cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36+ metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36+ metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.


Subject(s)
Antibodies, Neutralizing/pharmacology , CD36 Antigens/antagonists & inhibitors , Mouth Neoplasms/pathology , Neoplasm Metastasis/pathology , Neoplasm Metastasis/prevention & control , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , CD36 Antigens/genetics , CD36 Antigens/immunology , CD36 Antigens/metabolism , Cell Proliferation , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/metabolism , Lipid Metabolism/genetics , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Male , Mice , Mouth Neoplasms/diagnosis , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/genetics , Neoplastic Stem Cells/metabolism , Palmitic Acid/administration & dosage , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Penetrance , Prognosis , Transcriptome , Xenograft Model Antitumor Assays
16.
EMBO J ; 35(9): 942-60, 2016 05 02.
Article in English | MEDLINE | ID: mdl-26933123

ABSTRACT

The generation of multiciliated cells (MCCs) is required for the proper function of many tissues, including the respiratory tract, brain, and germline. Defects in MCC development have been demonstrated to cause a subclass of mucociliary clearance disorders termed reduced generation of multiple motile cilia (RGMC). To date, only two genes, Multicilin (MCIDAS) and cyclin O (CCNO) have been identified in this disorder in humans. Here, we describe mice lacking GEMC1 (GMNC), a protein with a similar domain organization as Multicilin that has been implicated in DNA replication control. We have found that GEMC1-deficient mice are growth impaired, develop hydrocephaly with a high penetrance, and are infertile, due to defects in the formation of MCCs in the brain, respiratory tract, and germline. Our data demonstrate that GEMC1 is a critical regulator of MCC differentiation and a candidate gene for human RGMC or related disorders.


Subject(s)
Carrier Proteins/metabolism , Cell Differentiation , Cilia/genetics , Cilia/physiology , Growth Disorders/genetics , Growth Disorders/pathology , Animals , Carrier Proteins/genetics , Cell Cycle Proteins , Mice , Mice, Knockout
17.
Int J Mol Sci ; 16(8): 17303-14, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26230688

ABSTRACT

Nucleotide modifications in the anticodons of transfer RNAs (tRNA) play a central role in translation efficiency, fidelity, and regulation of translation, but, for most of these modifications, the details of their function remain unknown. The heterodimeric adenosine deaminases acting on tRNAs (ADAT2-ADAT3, or ADAT) are enzymes present in eukaryotes that convert adenine (A) to inosine (I) in the first anticodon base (position 34) by hydrolytic deamination. To explore the influence of ADAT activity on mammalian translation, we have characterized the human transcriptome and proteome in terms of frequency and distribution of ADAT-related codons. Eight different tRNAs can be modified by ADAT and, once modified, these tRNAs will recognize NNC, NNU and NNA codons, but not NNG codons. We find that transcripts coding for proteins highly enriched in these eight amino acids (ADAT-aa) are specifically enriched in NNC, NNU and NNA codons. We also show that the proteins most enriched in ADAT-aa are composed preferentially of threonine, alanine, proline, and serine (TAPS). We propose that the enrichment in ADAT-codons in these proteins is due to the similarities in the codons that correspond to TAPS.


Subject(s)
AMP Deaminase/metabolism , Codon/chemistry , Transcriptome , Codon/genetics , Codon/metabolism , Genome, Human , Humans , Proteome/chemistry , Proteome/genetics , Proteome/metabolism , RNA, Transfer/metabolism
18.
Nat Commun ; 6: 7049, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25916810

ABSTRACT

dDsk2 is a conserved extraproteasomal ubiquitin receptor that targets ubiquitylated proteins for degradation. Here we report that dDsk2 plays a nonproteolytic function in transcription regulation. dDsk2 interacts with the dHP1c complex, localizes at promoters of developmental genes and is required for transcription. Through the ubiquitin-binding domain, dDsk2 interacts with H2Bub1, a modification that occurs at dHP1c complex-binding sites. H2Bub1 is not required for binding of the complex; however, dDsk2 depletion strongly reduces H2Bub1. Co-depletion of the H2Bub1 deubiquitylase dUbp8/Nonstop suppresses this reduction and rescues expression of target genes. RNA polymerase II is strongly paused at promoters of dHP1c complex target genes and dDsk2 depletion disrupts pausing. Altogether, these results suggest that dDsk2 prevents dUbp8/Nonstop-dependent H2Bub1 deubiquitylation at promoters of dHP1c complex target genes and regulates RNA polymerase II pausing. These results expand the catalogue of nonproteolytic functions of ubiquitin receptors to the epigenetic regulation of chromatin modifications.


Subject(s)
Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Histones/metabolism , RNA Polymerase II/metabolism , Animals , Binding Sites , Carrier Proteins/chemistry , Cell Cycle Proteins/chemistry , Chromatin Immunoprecipitation , Drosophila Proteins/chemistry , Histones/chemistry , Multiprotein Complexes/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Structure, Tertiary , Proteolysis , Transcription Initiation Site , Transcription, Genetic , Ubiquitination
19.
Nat Genet ; 47(4): 320-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25706628

ABSTRACT

Recent molecular classifications of colorectal cancer (CRC) based on global gene expression profiles have defined subtypes displaying resistance to therapy and poor prognosis. Upon evaluation of these classification systems, we discovered that their predictive power arises from genes expressed by stromal cells rather than epithelial tumor cells. Bioinformatic and immunohistochemical analyses identify stromal markers that associate robustly with disease relapse across the various classifications. Functional studies indicate that cancer-associated fibroblasts (CAFs) increase the frequency of tumor-initiating cells, an effect that is dramatically enhanced by transforming growth factor (TGF)-ß signaling. Likewise, we find that all poor-prognosis CRC subtypes share a gene program induced by TGF-ß in tumor stromal cells. Using patient-derived tumor organoids and xenografts, we show that the use of TGF-ß signaling inhibitors to block the cross-talk between cancer cells and the microenvironment halts disease progression.


Subject(s)
Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Fibroblasts/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cluster Analysis , Colorectal Neoplasms/classification , Colorectal Neoplasms/pathology , Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Mice , Mice, Nude , Microarray Analysis , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplastic Stem Cells/pathology , Prognosis , Stromal Cells/metabolism , Stromal Cells/pathology , Transcriptome
20.
PLoS One ; 8(11): e79298, 2013.
Article in English | MEDLINE | ID: mdl-24223926

ABSTRACT

Our goal in these analyses was to use genomic features from a test set of primary breast tumors to build an integrated transcriptome landscape model that makes relevant hypothetical predictions about the biological and/or clinical behavior of HER2-positive breast cancer. We interrogated RNA-Seq data from benign breast lesions, ER+, triple negative, and HER2-positive tumors to identify 685 differentially expressed genes, 102 alternatively spliced genes, and 303 genes that expressed single nucleotide sequence variants (eSNVs) that were associated with the HER2-positive tumors in our survey panel. These features were integrated into a transcriptome landscape model that identified 12 highly interconnected genomic modules, each of which represents a cellular processes pathway that appears to define the genomic architecture of the HER2-positive tumors in our test set. The generality of the model was confirmed by the observation that several key pathways were enriched in HER2-positive TCGA breast tumors. The ability of this model to make relevant predictions about the biology of breast cancer cells was established by the observation that integrin signaling was linked to lapatinib sensitivity in vitro and strongly associated with risk of relapse in the NCCTG N9831 adjuvant trastuzumab clinical trial dataset. Additional modules from the HER2 transcriptome model, including ubiquitin-mediated proteolysis, TGF-beta signaling, RHO-family GTPase signaling, and M-phase progression, were linked to response to lapatinib and paclitaxel in vitro and/or risk of relapse in the N9831 dataset. These data indicate that an integrated transcriptome landscape model derived from a test set of HER2-positive breast tumors has potential for predicting outcome and for identifying novel potential therapeutic strategies for this breast cancer subtype.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Models, Biological , Receptor, ErbB-2/metabolism , Transcriptome , Base Sequence , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Genomics , Humans , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL