Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Analyst ; 149(12): 3380-3395, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38712606

ABSTRACT

Plant hormones are important in the control of physiological and developmental processes including seed germination, senescence, flowering, stomatal aperture, and ultimately the overall growth and yield of plants. Many currently available methods to quantify such growth regulators quickly and accurately require extensive sample purification using complex analytic techniques. Herein we used ultra-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) to create and validate the prediction of hormone concentrations made using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectral profiles of both freeze-dried ground leaf tissue and extracted xylem sap of Japanese knotweed (Reynoutria japonica) plants grown under different environmental conditions. In addition to these predictions made with partial least squares regression, further analysis of spectral data was performed using chemometric techniques, including principal component analysis, linear discriminant analysis, and support vector machines (SVM). Plants grown in different environments had sufficiently different biochemical profiles, including plant hormonal compounds, to allow successful differentiation by ATR-FTIR spectroscopy coupled with SVM. ATR-FTIR spectral biomarkers highlighted a range of biomolecules responsible for the differing spectral signatures between growth environments, such as triacylglycerol, proteins and amino acids, tannins, pectin, polysaccharides such as starch and cellulose, DNA and RNA. Using partial least squares regression, we show the potential for accurate prediction of plant hormone concentrations from ATR-FTIR spectral profiles, calibrated with hormonal data quantified by UHPLC-HRMS. The application of ATR-FTIR spectroscopy and chemometrics offers accurate prediction of hormone concentrations in plant samples, with advantages over existing approaches.


Subject(s)
Plant Growth Regulators , Spectroscopy, Fourier Transform Infrared/methods , Plant Growth Regulators/analysis , Least-Squares Analysis , Plant Leaves/chemistry , Chromatography, High Pressure Liquid/methods , Support Vector Machine , Mass Spectrometry/methods , Principal Component Analysis
2.
ACS Omega ; 9(4): 4317-4323, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38313510

ABSTRACT

Benzo[a]pyrene (B[a]P) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) are widespread environmental pollutants and can destroy thyroid function. We assessed the biochemical changes in the thyroid tissue of rats exposed to B[a]P and BDE-47 using attenuated total reflection Fourier-transform infrared spectroscopy combined with support vector machine(SVM). After B[a]P and BDE-47 treatment in rats, the structure of thyroid follicles was destroyed and epithelial cells were necrotic, indicating that B[a]P and BDE-47 may lead to changes of the thyroid morphology of the rats. These damages are mainly related to C=O stretch vibrations of lipids (1743 cm-1), as well as the secondary structure of proteins [amide I (1645 cm-1) and amide II (1550 cm-1)], and carbohydrates [C-OH (1138 cm-1), C-O (1106 cm-1, 1049 cm-1, 991 cm-1), C-C (1106 cm-1) stretching] and collagen (phosphodiester stretching at 922 cm-1) vibration modes. When SVM was used for classification, there was a substantial separation between the control and the exposure groups (accuracy = 96%; sensitivity = 98%; specificity = 87%), and there was also a major separation between the exposed groups (accuracy = 93%; sensitivity = 94%; and specificity = 92%).

3.
Analyst ; 149(2): 497-506, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38063458

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease with an increasing prevalence that is causing worldwide concern. The pre-diabetes stage is the only reversible stage in the patho-physiological process towards DM. Due to the limitations of traditional methods, the diagnosis and detection of DM and pre-diabetes are complicated, expensive, and time-consuming. Therefore, it would be of great benefit to develop a simple, rapid and inexpensive diagnostic test. Herein, the infrared (IR) spectra of serum samples from 111 DM patients, 111 pre-diabetes patients and 333 healthy volunteers were collected using attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy and this was combined with the multivariate analysis of principal component analysis linear discriminant analysis (PCA-LDA) to develop a discriminant model to verify the diagnostic potential of this approach. The study found that the accuracy of the test model established by ATR-FTIR spectroscopy combined with PCA-LDA was 97%, and the sensitivity and specificity were 100% and 100% in the control group, 94% and 98% in the pre-diabetes group, and 91% and 98% in the DM group, respectively. This indicates that this method can effectively diagnose DM and pre-diabetes, which has far-reaching clinical significance.


Subject(s)
Diabetes Mellitus , Prediabetic State , Humans , Prediabetic State/diagnosis , Spectroscopy, Fourier Transform Infrared/methods , Multivariate Analysis , Discriminant Analysis , Diabetes Mellitus/diagnosis , Principal Component Analysis , Ataxia Telangiectasia Mutated Proteins
4.
J Pers Med ; 13(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38003848

ABSTRACT

Saliva is a largely unexplored liquid biopsy that can be readily obtained noninvasively. Not dissimilar to blood plasma or serum, it contains a vast array of bioconstituents that may be associated with the absence or presence of a disease condition. Given its ease of access, the use of saliva is potentially ideal in a point-of-care screening or diagnostic test. Herein, we developed a swab "dip" test in saliva obtained from consenting patients participating in a lung cancer-screening programme being undertaken in north-west England. A total of 998 saliva samples (31 designated as lung-cancer positive and 17 as prostate-cancer positive) were taken in the order in which they entered the clinic (i.e., there was no selection of participants) during the course of this prospective screening programme. Samples (sterile Copan blue rayon swabs dipped in saliva) were analysed using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. In addition to unsupervised classification on resultant infrared (IR) spectra using principal component analysis (PCA), a range of feature selection/extraction algorithms were tested. Following preprocessing, the data were split between training (70% of samples, 22 lung-cancer positive versus 664 other) and test (30% of samples, 9 lung-cancer positive versus 284 other) sets. The training set was used for model construction and the test set was used for validation. The best model was the PCA-quadratic discriminant analysis (QDA) algorithm. This PCA-QDA model was built using 8 PCs (90.4% of explained variance) and resulted in 93% accuracy for training and 91% for testing, with clinical sensitivity at 100% and specificity at 91%. Additionally, for prostate cancer patients amongst the male cohort (n = 585), following preprocessing, the data were split between training (70% of samples, 12 prostate-cancer positive versus 399 other) and test (30% of samples, 5 prostate-cancer positive versus 171 other) sets. A PCA-QDA model, again the best model, was built using 5 PCs (84.2% of explained variance) and resulted in 97% accuracy for training and 93% for testing, with clinical sensitivity at 100% and specificity at 92%. These results point to a powerful new approach towards the capability to screen large cohorts of individuals in primary care settings for underlying malignant disease.

5.
J Pers Med ; 13(8)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37623527

ABSTRACT

This study presents ATR-FTIR (attenuated total reflectance Fourier-transform infrared) spectral analysis of ex vivo oesophageal tissue including all classifications to oesophageal adenocarcinoma (OAC). The article adds further validation to previous human tissue studies identifying the potential for ATR-FTIR spectroscopy in differentiating among all classes of oesophageal transformation to OAC. Tissue spectral analysis used principal component analysis quadratic discriminant analysis (PCA-QDA), successive projection algorithm quadratic discriminant analysis (SPA-QDA), and genetic algorithm quadratic discriminant analysis (GA-QDA) algorithms for variable selection and classification. The variables selected by SPA-QDA and GA-QDA discriminated tissue samples from Barrett's oesophagus (BO) to OAC with 100% accuracy on the basis of unique spectral "fingerprints" of their biochemical composition. Accuracy test results including sensitivity and specificity were determined. The best results were obtained with PCA-QDA, where tissues ranging from normal to OAC were correctly classified with 90.9% overall accuracy (71.4-100% sensitivity and 89.5-100% specificity), including the discrimination between normal and inflammatory tissue, which failed in SPA-QDA and GA-QDA. All the models revealed excellent results for distinguishing among BO, low-grade dysplasia (LGD), high-grade dysplasia (HGD), and OAC tissues (100% sensitivities and specificities). This study highlights the need for further work identifying potential biochemical markers using ATR-FTIR in tissue that could be utilised as an adjunct to histopathological diagnosis for early detection of neoplastic changes in susceptible epithelium.

6.
Sci Rep ; 13(1): 9686, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322087

ABSTRACT

Among several complications related to physiotherapy, osteosarcopenia is one of the most frequent in elderly patients. This condition is limiting and quite harmful to the patient's health by disabling several basic musculoskeletal activities. Currently, the test to identify this health condition is complex. In this study, we use mid-infrared spectroscopy combined with chemometric techniques to identify osteosarcopenia based on blood serum samples. The purpose of this study was to evaluate the mid-infrared spectroscopy power to detect osteosarcopenia in community-dwelling older women (n = 62, 30 from patients with osteosarcopenia and 32 healthy controls). Feature reduction and selection techniques were employed in conjunction with discriminant analysis, where a principal component analysis with support vector machines (PCA-SVM) model achieved 89% accuracy to distinguish the samples from patients with osteosarcopenia. This study shows the potential of using infrared spectroscopy of blood samples to identify osteosarcopenia in a simple, fast and objective way.


Subject(s)
Chemometrics , Support Vector Machine , Humans , Female , Aged , Spectrophotometry, Infrared , Principal Component Analysis , Discriminant Analysis
7.
Sci Rep ; 13(1): 4658, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949149

ABSTRACT

This study performs a chemical investigation of blood plasma samples from patients with and without fibromyalgia, combined with some of the symptoms and their levels of intensity used in the diagnosis of this disease. The symptoms evaluated were: visual analogue pain scale (VAS); fibromyalgia impact questionnaire (FIQ); Hamilton anxiety rating scale (HAM); Tampa Scale for Kinesiophobia (TAMPA); quality of life Questionnaire-physical and mental health (QL); and Pain Catastrophizing Scale (CAT). Plasma samples were analyzed by paper spray ionization mass spectrometry (PSI-MS). Spectral data were organized into datasets and related to each of the symptoms measured. The datasets were submitted to multivariate classification using supervised models such as principal component analysis with linear discriminant analysis (PCA-LDA), successive projections algorithm with linear discriminant analysis (SPA-LDA), genetic algorithm with linear discriminant analysis (GA-LDA) and their versions with quadratic discriminant analysis (PCA/SPA/GA-QDA) and support vector machines (PCA/SPA/GA-SVM). These algorithm combinations were performed aiming the best class separation. Good discrimination between the controls and fibromyalgia samples were observed using PCA-LDA, where the spectral data associated with the CAT symptom achieved 100% classification sensitivity, and associated with the VAS symptom achieved 100% classification specificity, with both symptoms at the moderate level of intensity. The spectral variable at 579 m/z was found to be substantially significant for classification according to the PCA loadings. According to the human metabolites database, this variable can be associated with a LysoPC compound, which comprises a class of metabolites already evidenced in other studies for fibromyalgia diagnosis. This study proposed an investigation of spectral data combined with clinical data to compare the classification ability of different datasets. The good classification results obtained confirm this technique is as a good analytical tool for the detection of fibromyalgia, and provides theoretical support for other studies about fibromyalgia diagnosis.


Subject(s)
Fibromyalgia , Humans , Fibromyalgia/diagnosis , Quality of Life , Mass Spectrometry , Discriminant Analysis , Principal Component Analysis
8.
Acta Trop ; 238: 106779, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36442528

ABSTRACT

The detection of toxic substances in larvae from carcasses in an advanced stage of decomposition may help criminal expertise in elucidating the cause of death in suspected cases of poisoning. Terbufos (Counter®) or O,O-diethyl-S-[(tert-butylsulfanyl)methyl] phosphorodithioate is an insecticide and systemic nematicide, which has very high toxicity from an acute point of view (oral LD50 in rodents ranging from 1.4 to 9.2 mg/kg) that has been marketed irregularly and indiscriminately in Brazil as a rodenticide, often being used to practice homicides. The present study aims to evaluate the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to detect traces of terbufos pesticide in fly larvae (Sarcophagidae). ATR-FTIR spectra of scavenger fly larvae from control (n = 31) and intoxicated (n = 80) groups were collected and submitted to chemometric analysis by means of multivariate classification using principal component analysis with quadratic discriminant analysis (PCA-QDA), successive projections algorithm with quadratic discriminant analysis (SPA-QDA) and genetic algorithm with quadratic discriminant analysis (GA-QDA) in order to distinguish between control and intoxicated groups. All discriminant models showed sensitivity and specificity above 90%, with the GA-QDA model showing the best performance with 98.9% sensitivity and specificity. The proposed methodology proved to be sensitive and promising for the detection of terbufos in scavenger fly larvae from intoxicated rat carcasses. In addition, the non-destructive nature of the ATR-FTIR technique may be useful in preserving the forensic evidence, meeting the precepts of the chain of custody and allowing for counter-proof.


Subject(s)
Chemometrics , Animals , Rats , Spectroscopy, Fourier Transform Infrared/methods , Discriminant Analysis , Sensitivity and Specificity , Larva , Principal Component Analysis
9.
Diagnostics (Basel) ; 12(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36553165

ABSTRACT

The aim of this study was to explore the proof of concept for using Raman spectroscopy as a diagnostic platform in the setting of systemic lupus erythematosus (SLE). We sought to identify unique Raman signatures in serum blood samples to successfully segregate SLE patients from healthy controls (HC). In addition, a retrospective audit was undertaken to assess the clinical utility of current testing platforms used to detect anti-double stranded DNA (dsDNA) antibodies (n = 600). We examined 234 Raman spectra to investigate key variances between SLE patients (n = 8) and HC (n = 4). Multi-variant analysis and classification model construction was achieved using principal component analysis (PCA), PCA-linear discriminant analysis and partial least squares-discriminant analysis (PLS-DA). We achieved the successful segregation of Raman spectra from SLE patients and healthy controls (p-value < 0.0001). Classification models built using PLS-DA demonstrated outstanding performance characteristics with 99% accuracy, 100% sensitivity and 99% specificity. Twelve statistically significant (p-value < 0.001) wavenumbers were identified as potential diagnostic spectral markers. Molecular assignments related to proteins and DNA demonstrated significant Raman intensity changes between SLE and HC groups. These wavenumbers may serve as future biomarkers and offer further insight into the pathogenesis of SLE. Our audit confirmed previously reported inconsistencies between two key methodologies used to detect anti-dsDNA, highlighting the need for improved laboratory testing for SLE. Raman spectroscopy has demonstrated powerful performance characteristics in this proof-of-concept study, setting the foundations for future translation into the clinical setting.

10.
Sci Rep ; 12(1): 16199, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171258

ABSTRACT

Despite tremendous research advances in detecting Alzheimer's disease (AD), traditional diagnostic tests remain expensive, time-consuming or invasive. The search for a low-cost, rapid, and minimally invasive test has marked a new era of research and technological developments toward establishing blood-based AD biomarkers. The current study has employed excitation-emission matrices (EEM) of fluorescence spectroscopy combined with machine learning to diagnose AD using blood plasma samples from 230 individuals (83 AD patients from 147 healthy controls). To evaluate the performance of the classification algorithms, we calculated the commonly used figures of merit (accuracy, sensitivity and specificity) and figures of merit that take into account the samples unbalance and the discrimination power of the models, as F2-score (F2), Matthews correlation coefficient (MCC) and test effectiveness ([Formula: see text]). The classification models achieved satisfactory results: Parallel Factor Analysis with Quadratic Discriminant Analysis (PARAFAC-QDA) with 83.33% sensitivity, 100% specificity, 86.21% F2; and Tucker3-QDA with 91.67% sensitivity, 95.45% specificity and 91.67% F2. In addition, the classifiers show high overall performance with 94.12% accuracy and 0.87 MCC. Regarding the discrimination power between healthy and AD patients, the classification algorithms showed high effectiveness with the mean scores separated by three or more standard deviations. The PARAFAC's spectral profiles and the wavelength values from both models loading profiles can be used in future research to relate this information to plasma AD biomarkers. Our results point to a rapid, low-cost and minimally invasive blood-based method for AD diagnosis.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnosis , Biomarkers , Discriminant Analysis , Humans , Plasma , Spectrometry, Fluorescence
11.
Acta Trop ; 235: 106672, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36041495

ABSTRACT

Infrared spectroscopy has been gaining prominence in entomology, such as for solving taxonomic problems, sexing adult specimens, determining the age of immature specimens, detecting drugs of abuse in fly larvae, and can be an important technique in Forensic Entomology. In order to help identify the species of Calliphoridae and Sarcophagidae families, the present study aimed to evaluate the use of near infrared spectroscopy (NIRS) coupled with chemometric methods for separating fly specimens into taxonomic categories and understanding the taxonomic relationship between them. Spectra collected from nine species of flies were subjected to unsupervised principal component analysis (PCA) and hierarchical cluster analysis (HCA), in which we sought to visualize the relationship between the samples (segregation of genera and families) with subsequent identification. In PCA, the best model was achieved using five principal components (PCs), which explained 99.16% of total variance of the original data set. The first principal component (PC1) and the fourth principal component (PC4) provided the best segregation, the latter being more important in the segregation of the species Chrysomya albiceps, Lucilia eximia, and Ravinia belforti from the others. In the HCA dendrogram, there was a clear separation between the specimens by family (Calliphoridae and Sarcophagidae) and genera (Chrysomya, Lucilia, Oxysarcodexia, Peckia and Ravinia). This study shows that NIRS is efficient to identify flies' taxonomic properties, such as family and genera, providing quick evidence for the tested species identity.


Subject(s)
Diptera , Sarcophagidae , Animals , Calliphoridae , Chemometrics , Forensic Medicine/methods , Spectroscopy, Near-Infrared
12.
Photodiagnosis Photodyn Ther ; 38: 102785, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35231616

ABSTRACT

Fourier-transform infrared (FT-IR) and Raman spectroscopy are being widely applied as sensor-based techniques in oncology, particularly in the diagnosis of brain cancers and their subtypes. Overtime, these techniques have become more sensitive; and, accuracies of over 90% have been observed in several studies. This is indication of their potential for clinical implementation. Herein, we present a mini-review by revisiting some fundamentals of FT-IR and Raman spectroscopy along with their applications towards brain cancer detection in the literature.


Subject(s)
Brain Neoplasms , Photochemotherapy , Brain Neoplasms/diagnosis , Head , Humans , Photochemotherapy/methods , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121018, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35189493

ABSTRACT

Meningiomas remains a clinical dilemma. They are the commonest "benign" types of brain tumours and, although being typically benign, they are divided into three WHO grades categories (I, II and III) which are associated with the tumour growth rate and likelihood of recurrence. Recurrence depends on extend of surgery as well as histopathological diagnosis. There is a marked variation amongst surgeons in the follow-up arrangements for their patients even within the same unit which has a significant clinical, and financial implication. Knowing the tumour grade rapidly is an important factor to predict surgical outcomes and adequate patient treatment. Clinical follow up sometimes is haphazard and not based on clear evidence. Spectrochemical techniques are a powerful tool for cancer diagnostics. Raman hyperspectral imaging is able to generate spatially-distributed spectrochemical signatures with great sensitivity. Using this technique, 95 brain tissue samples (66 meningiomas WHO grade I, 24 meningiomas WHO grade II and 5 meningiomas that reoccurred) were analysed in order to discriminate grade I and grade II samples. Newly-developed three-dimensional discriminant analysis algorithms were used to process the hyperspectral imaging data in a 3D fashion. Three-dimensional principal component analysis quadratic discriminant analysis (3D-PCA-QDA) was able to distinguish grade I and grade II meningioma samples with 96% test accuracy (100% sensitivity and 95% specificity). This technique is here shown to be a high-throughput, reagent-free, non-destructive, and can give accurate predictive information regarding the meningioma tumour grade, hence, having enormous clinical potential with regards to being developed for intra-operative real-time assessment of disease.


Subject(s)
Brain Neoplasms , Meningeal Neoplasms , Meningioma , Brain Neoplasms/diagnostic imaging , Child , Discriminant Analysis , Humans , Hyperspectral Imaging , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningioma/diagnostic imaging , Meningioma/pathology
14.
J Hazard Mater ; 422: 126892, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34425427

ABSTRACT

Microplastics (MPs) contamination is ubiquitous in environmental matrices worldwide. Moreover these pollutants can be ingested by organisms and transported to organs via the circulatory system. Although efficient methods for the analysis of MPs derived from environment matrices and organisms' tissue samples have been developed after special sample pre-treatment, there remains a need for an optimised approach allowing direct identification and visualisation these MPs in real environmental matrices and organismal samples. Herein, we firstly used a multivariate curve resolution-alternating least squares (MCR-ALS) analysis of Raman hyperspectral imaging data to direct identification and visualisation of MPs in a complex serum background. Four common MPs types including polyethylene (PE), polystyrene (PS), polypropylene (PP) and polyethylene terephthalate (PET) were identified and visualised either individually or in mixtures within spiked samples at an 8-µm spatial resolution. Moreover, Raman imaging based on MCR-ALS was successfully applied in fish faeces biological samples and environmental sand samples for in situ MPs identification directly without washing or removal of organic matter. The current results demonstrate Raman imaging based on MCR-ALS as a novel imaging approach for direct identification and visualisation of MPs, through extraction of MPs' chemical spectra within a complicated biological or environmental background whilst eliminating overlapping Raman bands and fluorescence interference.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Least-Squares Analysis , Multivariate Analysis , Plastics , Polyethylene , Water Pollutants, Chemical/analysis
15.
Behav Brain Res ; 418: 113629, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34656692

ABSTRACT

Mice homozygous for the nude mutation (Foxn1nu) are hairless and exhibit congenital dysgenesis of the thymic epithelium, resulting in a primary immunodeficiency of mature T-cells, and have been used for decades in research with tumour grafts. Early studies have already demonstrated social behaviour impairments and central nervous system (CNS) alterations in these animals, but did not address the complex interplay between CNS, immune system and behavioural alterations. Here we investigate the impact of T-cell immunodeficiency on behaviours relevant to the study of neurodevelopmental and neuropsychiatric disorders. Moreover, we aimed to characterise in a multidisciplinary manner the alterations related to those findings, through evaluation of the excitatory/inhibitory synaptic proteins, cytokines expression and biological spectrum signature of different biomolecules in nude mice CNS. We demonstrate that BALB/c nude mice display sociability impairments, a complex pattern of repetitive behaviours and higher sensitivity to thermal nociception. These animals also have a reduced IFN-γ gene expression in the prefrontal cortex and an absence of T-cells in meningeal tissue, both known modulators of social behaviour. Furthermore, excitatory synaptic protein PSD-95 immunoreactivity was also reduced in the prefrontal cortex, suggesting an intricate involvement of social behaviour related mechanisms. Lastly, employing biospectroscopy analysis, we have demonstrated that BALB/c nude mice have a different CNS spectrochemical signature compared to their heterozygous littermates. Altogether, our results show a comprehensive behavioural analysis of BALB/c nude mice and potential neuroimmunological influences involved with the observed alterations.


Subject(s)
Mental Disorders/immunology , Mutation/genetics , Neurodevelopmental Disorders/immunology , T-Lymphocytes/immunology , Animals , Mice , Mice, Inbred BALB C , Mice, Nude
16.
BMC Plant Biol ; 21(1): 522, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34753418

ABSTRACT

BACKGROUND: Japanese knotweed (R. japonica var japonica) is one of the world's 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed. RESULTS: We have shown distinct differences in the spectral fingerprint region (1800-900 cm- 1) of Japanese knotweed from three different regions in the UK that were sufficient to successfully identify plants from different geographical regions with high accuracy using support vector machine (SVM) chemometrics. CONCLUSIONS: These differences were not correlated with environmental variations between regions, raising the possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. japonica to invade and thrive in such diverse habitats.


Subject(s)
Fallopia japonica/growth & development , Spectroscopy, Fourier Transform Infrared , Adaptation, Physiological/genetics , Climate , Environment , Fallopia japonica/chemistry , Fallopia japonica/genetics , Introduced Species , Phylogeography , Soil
17.
Sci Rep ; 11(1): 22609, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799631

ABSTRACT

Prevention of mother-to-child transmission programs have been one of the hallmarks of success in the fight against HIV/AIDS. In Brazil, access to antiretroviral therapy (ART) during pregnancy has increased, leading to a reduction in new infections among children. Currently, lifelong ART is available to all pregnant, however yet challenges remain in eliminating mother-to-child transmission. In this paper, we focus on the role of near-infrared (NIR) spectroscopy to analyse blood plasma samples of pregnant women with HIV infection to differentiate pregnant women without HIV infection. Seventy-seven samples (39 HIV-infected patient and 38 healthy control samples) were analysed. Multivariate classification of resultant NIR spectra facilitated diagnostic segregation of both sample categories in a fast and non-destructive fashion, generating good accuracy, sensitivity and specificity. This method is simple and low-cost, and can be easily adapted to point-of-care screening, which can be essential to monitor pregnancy risks in remote locations or in the developing world. Therefore, it opens a new perspective to investigate vertical transmission (VT). The approach described here, can be useful for the identification and exploration of VT under various pathophysiological conditions of maternal HIV. These findings demonstrate, for the first time, the potential of NIR spectroscopy combined with multivariate analysis as a screening tool for fast and low-cost HIV detection.


Subject(s)
Chemometrics/methods , HIV Infections/blood , Infectious Disease Transmission, Vertical , Spectroscopy, Near-Infrared/methods , Adult , Anti-Retroviral Agents/therapeutic use , Brazil , Case-Control Studies , Computer Simulation , Female , Humans , Models, Statistical , Multivariate Analysis , Pregnancy , Pregnancy Complications, Infectious , Young Adult
18.
Sci Rep ; 11(1): 22625, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799667

ABSTRACT

Fibromyalgia is a rheumatological disorder that causes chronic pain and other symptomatic conditions such as depression and anxiety. Despite its relevance, the disease still presents a complex diagnosis where the doctor needs to have a correct clinical interpretation of the symptoms. In this context, it is valid to study tools that assist in the screening of this disease, using chemical work techniques such as mass spectroscopy. In this study, an analytical method is proposed to detect individuals with fibromyalgia (n = 20, 10 control samples and 10 samples with fibromyalgia) from blood plasma samples analyzed by mass spectrometry with paper spray ionization and subsequent multivariate classification of the spectral data (unsupervised and supervised), in addition to the treatment of selected variables with possible associations with metabolomics. Exploratory analysis with principal component analysis (PCA) and supervised analysis with successive projections algorithm with linear discriminant analysis (SPA-LDA) showed satisfactory results with 100% accuracy for sample prediction in both groups. This demonstrates that this combination of techniques can be used as a simple, reliable and fast tool in the development of clinical diagnosis of Fibromyalgia.


Subject(s)
Fibromyalgia/blood , Fibromyalgia/diagnosis , Mass Screening/methods , Mass Spectrometry/methods , Algorithms , Case-Control Studies , Chemistry Techniques, Analytical , Computer Simulation , Discriminant Analysis , Humans , Machine Learning , Metabolomics/methods , Multivariate Analysis , Principal Component Analysis , Sensitivity and Specificity
19.
Anal Bioanal Chem ; 413(20): 5095-5107, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34195877

ABSTRACT

Ovarian cancer remains the most lethal gynaecological malignancy, as its timely detection at early stages remains elusive. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy of biofluids has been previously applied in pilot studies for ovarian cancer diagnosis, with promising results. Herein, these initial findings were further investigated by application of ATR-FTIR spectroscopy in a large patient cohort. Spectra were obtained by measurements of blood plasma and serum, as well as urine, from 116 patients with ovarian cancer and 307 patients with benign gynaecological conditions. A preliminary chemometric analysis revealed significant spectral differences in ovarian cancer patients without previous chemotherapy (n = 71) and those who had received neo-adjuvant chemotherapy-NACT (n = 45), so these groups were compared separately with benign controls. Classification algorithms with blind predictive model validation demonstrated that serum was the best biofluid, achieving 76% sensitivity and 98% specificity for ovarian cancer detection, whereas urine exhibited poor performance. A drop in sensitivities for the NACT ovarian cancer group in plasma and serum indicates the potential of ATR-FTIR spectroscopy to identify chemotherapy-related spectral changes. Comparisons of regression coefficient plots for identification of biomarkers suggest that glycoproteins (such as CA125) are the main classifiers for ovarian cancer detection and responsible for smaller differences in spectra between NACT patients and benign controls. This study confirms the capacity of biofluids' ATR-FTIR spectroscopy (mainly blood serum) to diagnose ovarian cancer with high accuracy and demonstrates its potential in monitoring response to chemotherapy, which is reported for the first time. ATR-FTIR spectroscopy of blood serum achieves good segregation of ovarian cancers from benign controls, with attenuation of differences following neo-adjuvant chemotherapy.


Subject(s)
Biomarkers, Tumor/blood , Biomarkers, Tumor/urine , CA-125 Antigen/blood , CA-125 Antigen/urine , Membrane Proteins/blood , Membrane Proteins/urine , Ovarian Neoplasms/diagnosis , Spectroscopy, Fourier Transform Infrared/methods , Case-Control Studies , Chemotherapy, Adjuvant , Cohort Studies , Female , Humans , Ovarian Neoplasms/blood , Ovarian Neoplasms/urine
20.
Sci Rep ; 11(1): 9981, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976282

ABSTRACT

The current lack of a reliable biomarker of disease activity in anti-neutrophil cytoplasmic autoantibody (ANCA) associated vasculitis poses a significant clinical unmet need when determining relapsing or persisting disease. In this study, we demonstrate for the first time that attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy offers a novel and functional candidate biomarker, distinguishing active from quiescent disease with a high degree of accuracy. Paired blood and urine samples were collected within a single UK centre from patients with active disease, disease remission, disease controls and healthy controls. Three key biofluids were evaluated; plasma, serum and urine, with subsequent chemometric analysis and blind predictive model validation. Spectrochemical interrogation proved plasma to be the most conducive biofluid, with excellent separation between the two categories on PC2 direction (AUC 0.901) and 100% sensitivity (F-score 92.3%) for disease remission and 85.7% specificity (F-score 92.3%) for active disease on blind predictive modelling. This was independent of organ system involvement and current ANCA status, with similar findings observed on comparative analysis following successful remission-induction therapy (AUC > 0.9, 100% sensitivity for disease remission, F-score 75%). This promising technique is clinically translatable and warrants future larger study with longitudinal data, potentially aiding earlier intervention and individualisation of treatment.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/blood , Biomarkers/blood , Spectroscopy, Fourier Transform Infrared , Aged , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/urine , Biomarkers/urine , Female , Humans , Male , Middle Aged , Proof of Concept Study
SELECTION OF CITATIONS
SEARCH DETAIL
...