Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 110(11): 2521-2532, 2022 11.
Article in English | MEDLINE | ID: mdl-35779044

ABSTRACT

Prior to clinical use, the corrosion resistance of new prosthesis system must be verified. The fretting-corrosion mechanisms of total hip arthroplasty (THA) implants generate metal debris and ions that can increase the incidence of adverse tissue reactions. For cemented stems, there are at least two interfaces that can be damaged by fretting-corrosion: stem-head and stem-cement. This investigation aimed to evaluate, through in vitro and in silico analyses, fretting-corrosion at the stem-head and stem-cement interfaces, to determine which surface is most affected in pre-clinical testing and identify the causes associated with the observed behavior. Unimodular stems and femoral heads of three different groups were evaluated, defined according to the head/stem material as group I (SS/SS), group II (CoCr/SS), and group III (CoCr/CoCr). Seven pairs of stems and heads per group were tested: three pairs were subjected to material characterization, three pairs to in vitro fretting-corrosion testing, and one pair to geometric modeling in the in silico analysis. The absolute area of the stem body degraded was more than three times higher compared with the trunnion, for all groups. These results were corroborated by the in silico analysis results, which revealed that the average micromotion at the stem-cement interface (9.65-15.66 µm) was higher than that at the stem-head interface (0.55-1.08 µm). In conclusion, the degradation of the stem-cement interface is predominant in the pre-clinical set, indicating the need to consider the fretting-corrosion at the stem-cement interface during pre-clinical implant evaluations.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Arthroplasty, Replacement, Hip/methods , Bone Cements , Computer Simulation , Corrosion , Dental Materials , Glass Ionomer Cements , Humans , Prosthesis Design , Prosthesis Failure
2.
Res. Biomed. Eng. (Online) ; 31(2): 169-175, Apr-Jun/2015. graf
Article in English | LILACS | ID: biblio-829431

ABSTRACT

Introduction Although there has been significant progress in the design of implants for osteosynthesis, the occurrence of failures in these medical devices are still frequent. These implants are prone to suffer from fretting corrosion due to micromotion that takes place between the screw heads and plate holes. Consequently, fretting corrosion has been the subject of research in order to understand its influence on the structural integrity of osteosynthesis implants. The aim of this paper is to correlate the surface finish characteristics of bone plate-screw systems with fretting corrosion. Methods The surface finish (machined and polished) of five specimens taken from three commercial dynamic compression plates (DCP) were evaluated. For testing, the specimens were fixed with bone screws, immersed in a solution of 0.90% NaCl and subjected to a rocking motion with an amplitude of 1.70 mm and frequency of 1.0 Hz for 1.0 × 106 cycles, according to the ASTM F897 standard. Both, plate and screws were manufactured in Brazil with ASTM F138 stainless steel. Results Flaws on the hole countersink area and on the screw thread of some specimens were identified stereoscopically. At the end of the test all the specimens showed evidence of fretting corrosion with an average metal loss of 4.80 mg/million cycles. Conclusion An inadequate surface finish in some areas of the plates and screws may have favored the incidence of damage to the passive film, accelerating the fretting corrosion at the interfaces between the plate hole countersink and the screw head. Keywords Osteosynthesis, DCP, Bone plate, Screw, Fretting corrosion, Stainless steel.

SELECTION OF CITATIONS
SEARCH DETAIL
...