Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1088-92, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26408557

ABSTRACT

A translational preterm pig model analogous to infants born at 28 wk of gestation revealed that continuous positive airway pressure results in limited lung recruitment but does not prevent respiratory distress syndrome, whereas assist-control + volume guarantee (AC+VG) ventilation improves recruitment but can cause injury, highlighting the need for improved ventilation strategies. We determined whether airway pressure release ventilation (APRV) can be used to recruit the immature lungs of preterm pigs without injury. Spontaneously breathing pigs delivered at 89% of term (model for 28-wk infants) were randomized to 24 h of APRV (n = 9) vs. AC+VG with a tidal volume of 5 ml/kg (n = 10). Control pigs (n = 36) were provided with supplemental oxygen by an open mask. Nutrition and fluid support was provided throughout the 24-h period. All pigs supported with APRV and AC+VG survived 24 h, compared with 62% of control pigs. APRV resulted in improved lung volume recruitment compared with AC+VG based on radiographs, lower Pco2 levels (44 ± 2.9 vs. 53 ± 2.7 mmHg, P = 0.009) and lower inspired oxygen fraction requirements (36 ± 6 vs. 44 ± 11%, P < 0.001), and higher oxygenation index (5.1 ± 1.5 vs. 2.9 ± 1.1, P = 0.001). There were no differences between APRV and AC+VG pigs for heart rate, ratio of wet to dry lung mass, proinflammatory cytokines, or histopathological markers of lung injury. Lung protective ventilation with APRV improved recruitment of alveoli of preterm lungs, enhanced development and maintenance of functional residual capacity without injury, and improved clinical outcomes relative to AC+VG. Long-term consequences of lung volume recruitment by using APRV should be evaluated.


Subject(s)
Continuous Positive Airway Pressure , Respiratory Distress Syndrome, Newborn/prevention & control , Animals , Female , Lung/diagnostic imaging , Lung/pathology , Lung/physiopathology , Pregnancy , Premature Birth , Radiography , Respiratory Distress Syndrome, Newborn/diagnostic imaging , Sus scrofa , Tidal Volume
2.
Am J Physiol Lung Cell Mol Physiol ; 308(2): L118-29, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25398985

ABSTRACT

Respiratory distress syndrome (RDS) and bronchopulmonary dysplasia remain the leading causes of preterm infant morbidity, mortality, and lifelong disability. Research to improve outcomes requires translational large animal models for RDS. Preterm pigs delivered by caesarian section at gestation days (GD) 98, 100, 102, and 104 were provided 24 h of neonatal intensive care, monitoring (pulse oximetry, blood gases, serum biomarkers, radiography), and nutritional support, with or without intubation and mechanical ventilation (MV; pressure control ventilation with volume guarantee). Spontaneous development of RDS and mortality without MV are inversely related with GD at delivery and correspond with inadequacy of tidal volume and gas exchange. GD 98 and 100 pigs have consolidated lungs, immature alveolar architecture, and minimal surfactant protein-B expression, and MV is essential at GD 98. Although GD 102 pigs had some alveoli lined by pneumocytes and surfactant was released in response to MV, blood gases and radiography revealed limited recruitment 1-2 h after delivery, and mortality at 24 h was 66% (35/53) with supplemental oxygen provided by a mask and 69% (9/13) with bubble continuous positive airway pressure (8-9 cmH2O). The lungs at GD 104 had higher densities of thin-walled alveoli that secreted surfactant, and MV was not essential. Between GD 98 and 102, preterm pigs have ventilation inadequacies and risks of RDS that mimic those of preterm infants born during the saccular phase of lung development, are compatible with standards of neonatal intensive care, and are alternative to fetal nonhuman primates and lambs.


Subject(s)
Bronchopulmonary Dysplasia/pathology , Disease Models, Animal , Lung/embryology , Pulmonary Alveoli/embryology , Respiratory Distress Syndrome, Newborn/pathology , Swine , Animals , Biomarkers , Female , Fibroblast Growth Factor 7/biosynthesis , Humans , Infant, Newborn , Infant, Premature , Intensive Care, Neonatal , Male , Pregnancy , Pulmonary Alveoli/diagnostic imaging , Pulmonary Surfactant-Associated Protein B/biosynthesis , Radiography , Respiration, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL
...