Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38842492

ABSTRACT

Both sugars and lipids are important biomolecular building blocks with exceptional conformational flexibility and adaptability to their environment. Glycolipids bring together these two molecular components in the same assembly and combine the complexity of their conformational landscapes. In the present study, we have used selective double resonance vibrational spectroscopy, in combination with a computational approach, to explore the conformational preferences of two glycolipid models (3-0-acyl catechol and guaiacol α-D-glucopyranosides), either fully isolated in the gas phase or controlled interaction with a single water molecule. We could identify the preferred conformation and structures of the isolated and micro-hydrated species and evidence of the presence of a strong water pocket, which may influence the conformational flexibility of such systems, even in less controlled environments.

2.
J Phys Chem Lett ; 15(21): 5674-5680, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38767855

ABSTRACT

Noncovalent interactions involving sulfur centers play a relevant role in biological and chemical environments. Yet, detailed molecular descriptions are scarce and limited to very simple model systems. Here we explore the formation of the elusive S-H···S hydrogen bond and the competition between S-H···O and O-H···S interactions in pure and mixed dimers of the conformationally flexible molecules 2-phenylethanethiol (PET) and 2-phenylethanol (PEAL), using the isolated and size-controlled environment of a jet expansion. The structure of both PET-PET and PET-PEAL dimers was unraveled through a comprehensive methodology that combined rotationally resolved microwave spectroscopy, mass-resolved isomer-specific infrared laser spectroscopy, and quantum chemical calculations. This synergic experimental-computational approach offered unique insights into the potential energy surface, conformational equilibria, molecular structure, and intermolecular interactions of the dimers. The results show a preferential order for establishing hydrogen bonds following the sequence S-H···S < S-H···O ≲ O-H···S < O-H···O, despite the hydrogen bond only accounting for a fraction of the total interaction energy.

3.
Phys Chem Chem Phys ; 25(17): 12331-12341, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37083971

ABSTRACT

Hydrogen bonding (HB) is associated with frequency shifts, spectral broadening and intensity variation of the vibrational bands of the donor stretching modes. This is true in all systems, from the most basic molecular models, to more complex ones, and biological molecules. In the gas phase, the latter can be either fully isolated, with only intramolecular HB, or micro-solvated. The conformations of such systems are stabilized by networks of intramolecular and intermolecular HB where the donor groups can be coupled. This has been well-identified in the case of singly hydrated monosaccharides and in particular for phenyl-α-D-mannopyranoside, where the addition of a single water molecule reduces the number of observed conformations to a unique one, stabilized by such a cooperative network of intramolecular and intermolecular HB. In the present study we have re-examined this prototypical system to scrutinize subtle effects of isotopic substitution in the solvent molecule. Besides the obvious isotopic shift, coupling between intramolecular modes of sugar and water is observed, promoted by the intermolecular HB. The systematic substitution of water with heavy water, or methanol, also allowed the decomposition of the relation between HB strength and frequency shift.

4.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901823

ABSTRACT

Hydrogen bonds and stacking interactions are pivotal in biological mechanisms, although their proper characterisation within a molecular complex remains a difficult task. We used quantum mechanical calculations to characterise the complex between caffeine and phenyl-ß-D-glucopyranoside, in which several functional groups of the sugar derivative compete with each other to attract caffeine. Calculations at different levels of theory (M06-2X/6-311++G(d,p) and B3LYP-ED=GD3BJ/def2TZVP) agree to predict several structures similar in stability (relative energy) but with different affinity (binding energy). These computational results were experimentally verified by laser infrared spectroscopy, through which the caffeine·phenyl-ß-D-glucopyranoside complex was identified in an isolated environment, produced under supersonic expansion conditions. The experimental observations correlate with the computational results. Caffeine shows intermolecular interaction preferences that combine both hydrogen bonding and stacking interactions. This dual behaviour had already been observed with phenol, and now with phenyl-ß-D-glucopyranoside, it is confirmed and maximised. In fact, the size of the complex's counterparts affects the maximisation of the intermolecular bond strength because of the conformational adaptability given by the stacking interaction. Comparison with the binding of caffeine within the orthosteric site of the A2A adenosine receptor shows that the more strongly bound caffeine·phenyl-ß-D-glucopyranoside conformer mimics the interactions occurring within the receptor.


Subject(s)
Caffeine , Glucose , Molecular Conformation , Phenols , Spectrophotometry, Infrared , Quantum Theory , Hydrogen Bonding
5.
J Chem Phys ; 158(6): 064304, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36792500

ABSTRACT

The selection of cytosine, guanine, thymine, and adenine as components of the information biopolymers was a complex process influenced by several factors. Among them, the intermolecular interactions may have played a determinant role. Thus, a deep understanding of the intermolecular interactions between nucleobases and other prebiotic molecules may help understand the first instants of chemical evolution. Following this hypothesis, we present here a combined spectroscopic and computational study of theobromine2-adenine and thebromine-adenine2 trimers. While adenine is a nucleobase, theobromine was probably part of the prebiotic chemistry. The trimers were formed in jets and probed by a combination of UV and IR spectroscopic techniques. The spectra were interpreted in light of the predictions obtained using density-functional methods. The results suggest the existence of a subtle balance between formation of hydrogen bonds and π-π interactions. Thus, while theobromine2-adenine tends to form complex in stacked structures, theobromine-adenine2 prefers formation of planar structures, maximizing the interaction by hydrogen bonds. The small energy difference between planar and stacked structures highlights the importance of accurately modeling the dispersion forces in the functionals to produce reliable predictions.


Subject(s)
Adenine , Theobromine , Adenine/chemistry , Thymine/chemistry , Guanine/chemistry , Cytosine/chemistry
6.
Phys Chem Chem Phys ; 25(10): 7205-7212, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36846922

ABSTRACT

Sugars, together with amino acids and nucleobases, are the fundamental building blocks of a cell. They are involved in many fundamental processes and they especially play relevant roles as part of the immune system. The latter is connected to their ability to establish a collection of intermolecular interactions, depending on the position of their hydroxyl groups. Here we explore how the position of the OH in C4, the anomeric conformation and the nature substituent affect the interaction with phenol, which serves as a probe of the preferred site for the interaction. Using mass-resolved excitation spectroscopy and density functional calculations, we unravel the structure of the dimers and compare their conformation with those found for similar systems. The main conclusion is that the hydroxymethyl group has a very strong influence, guiding the whole aggregation process and that the position of the substituent in C4 has a stronger influence on the final structure of the dimer than the anomeric conformation.


Subject(s)
Galactose , Glucose , Glucose/chemistry , Galactose/chemistry , Phenol/chemistry , Molecular Conformation , Sugars
7.
Phys Chem Chem Phys ; 24(40): 24800-24809, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36214363

ABSTRACT

Gas-phase spectroscopic studies of alcohol clusters offer accurate information on the influence of non-covalent interactions on molecular recognition, and are of paramount importance to model supramolecular and biological chemical processes. Here, we examine the role of the aliphatic side chain in the self-aggregation of aromatic alcohols, using a multi-methodological gas-phase approach which combines microwave spectroscopy and mass-resolved electronic and vibrational laser spectroscopy. Spectroscopic and electronic structure computations were carried out for the dimer, trimer and tetramer of 2-phenylethanol, extending previous investigations on smaller aromatic alcohols. While the conformational flexibility of the ethyl group anticipates a variety of torsional isomers, the intra- and inter-molecular interactions restrict molecular conformations and favour particularly stable isomers. The conformational landscape of the clusters is very shallow and multiple competing isomers were rotationally and/or vibrationally detected, including three dimer species, two trimers and two tetramers. Cluster growth is associated with a tendency to form cyclic hydrogen bond structures.


Subject(s)
Phenylethyl Alcohol , Phenylethyl Alcohol/chemistry , Hydrogen Bonding , Molecular Conformation , Spectrum Analysis
8.
Chemphyschem ; 23(24): e202200330, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35984348

ABSTRACT

Herein, we have investigated the structure of phenyl formate⋅⋅⋅water (PhOF⋅⋅⋅H2 O) dimer and various non-covalent interactions present there using gas-phase laser spectroscopy and microwave spectroscopy combined with quantum chemistry calculations. Two conformers of PhOF⋅⋅⋅H2 O (C1 and T1), built on the two cis/trans conformers of the bare molecule, have been observed in the experiment. In cis-PhOF, there is an nCO → π A r * ${{{\rm \pi }}_{{\rm A}{\rm r}}^{{\rm {^\ast}}}}$ interaction between the lone-pair orbital of the carbonyl oxygen atom and the π* orbital of the phenyl ring, which persists in the monohydrated C1 conformer of PhOF⋅⋅⋅H2 O according to the NBO and NCI analyses. On the other hand, this interaction is absent in the trans-PhOF conformer as the C=O group is away from the phenyl ring. The C1 conformer is primarily stabilized by an interplay between O-H⋅⋅⋅O=C hydrogen bond and O-H⋅⋅⋅π interactions, while the stability of the T1 conformer is primarily governed by the O-H⋅⋅⋅O=C hydrogen bond. The most important finding of the present work is that the conformational preference of the PhOF monomer is retained in its monohydrated complex.


Subject(s)
Formates , Microwaves , Spectrum Analysis , Hydrogen Bonding , Lasers
9.
Chemistry ; 28(1): e202103636, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34854511

ABSTRACT

One of the most fascinating questions in chemistry is why nature chose CGAT as the alphabet of life. Very likely, such selection was the result of multiple factors and a long period of refinement. Here, we explore how the intermolecular interactions influenced such process, by characterizing the formation of dimers between adenine, theobromine and 4-aminopyrimidine. Using a combination of mass-resolved excitation spectroscopy and DFT calculations, we determined the structure of adenine-theobromine and 4-aminopyrimidine-theobromine dimers. The binding energy of these dimers is very close to the canonical adenine-thymine nucleobases. Likewise, the dimers are able to adopt Watson-Crick conformations. These findings seem to indicate that there were many options available to build the first versions of the informational polymers, which also had to compete with other molecules, such as 4-aminopyrimidine, which does not have a valid attaching point for a saccharide. For some reason, nature did not select the most strongly-bonded partners or if it did, such proto-bases were later replaced by the nowadays canonical CGAT.


Subject(s)
Thymine , Hydrogen Bonding , Lasers , Spectrum Analysis
10.
Phys Chem Chem Phys ; 23(41): 23610-23624, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34661223

ABSTRACT

Molecular aggregation is of paramount importance in many chemical processes, including those in living beings. Thus, characterization of the intermolecular interactions is an important step in its understanding. We describe here the aggregation of benzyl alcohol at the molecular level, a process governed by a delicate equilibrium between OH⋯O and OH⋯π hydrogen bonds and dispersive interactions. Using microwave, FTIR, Raman and mass-resolved double-resonance IR/UV spectroscopic techniques, we explored the cluster growth up to the tetramer and found a complex landscape, partly due to the appearance of multiple stereoisomers of very similar stability. Interestingly, a consistently homochiral synchronization of transiently chiral monomer conformers was observed during cluster growth to converge in the tetramer, where the fully homochiral species dominates the potential energy surface. The data on the aggregation of benzyl alcohol also constitute an excellent playground to fine-tune the parameters of the most advanced functionals.

11.
Phys Chem Chem Phys ; 22(27): 15759-15768, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32627788

ABSTRACT

Understanding the molecular basis of the appearance of life on Earth is an exciting research field. Many factors may have influenced the election of the molecules used by living beings and evolution may have modified those original compounds. In an attempt to understand the role played by intermolecular interactions in the election of CGAT as the alphabet of life, we present here a thorough experimental and computational study on the interaction of theobromine with water. Theobromine is a xanthine derivative, structurally related to the nucleobases, and also present in many living beings. The experimental results demonstrate that the most stable isomer of theobromine-water was formed and detected in supersonic expansions. This isomer very well resembles the structure of the dimers between nucleobases and water, offering similar values of binding energy. A comparison between the results obtained for theobromine-water with those reported in the literature for monohydrates of nucleobases is also offered.


Subject(s)
DNA/chemistry , Theobromine/chemistry , Water/chemistry , Density Functional Theory , Dimerization , Molecular Structure , Surface Properties
12.
Phys Chem Chem Phys ; 21(48): 26430-26437, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31774088

ABSTRACT

We explore the influence of the relative position of the methyl substituent on the photophysics of theophylline and theobromine, two molecules that are structurally related to the DNA bases. Using a combination of spectroscopic techniques and quantum mechanical calculations, we show that moving the methyl group from N1 in theophylline to N7 in theobromine causes significant differences in their excited state properties, i.e., it produces pyramidalization of N7 in the excited state of the latter. Paradoxically, this modification seems to have little effect on the structural properties of the cation and the ionization process. It is suggested that similar effects may exist in the excited state properties of DNA bases.


Subject(s)
Theobromine/chemistry , Theophylline/chemistry , Xanthines/chemistry , Photoelectron Spectroscopy , Spectrophotometry
13.
Chemistry ; 25(62): 14230-14236, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31478578

ABSTRACT

Intermolecular interactions are difficult to model, especially in systems formed by multiple interactions. Such is the case of caffeine-phenol. Structural data has been extracted by using mass-resolved excitation spectroscopy and double resonance techniques. Then the predictions of seven different computational methods have been explored to discover structural and energetic discrepancies between them that may even result in different assignments of the system. The results presented herein highlight the difficulty of constructing functionals to model systems with several competing interactions, and raise awareness of problems with assignments of complex systems with limited experimental information that rely exclusively on energetic data.

14.
Mol Biosyst ; 13(9): 1709-1712, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28714501

ABSTRACT

We explored the molecular basis of tyrosine as the docking amino acid for the first glucose molecule during the synthesis of glycogen. The IR spectra show that the aromatic ring acts as bait to keep the position where the next glucose unit has to bind clear, by luring non-desirable molecules towards the aromatic ring. Only, α-/ß-glucose shows particular affinity for the O3H and O4H moieties.


Subject(s)
Glucosyltransferases/chemistry , Glycoproteins/chemistry , Tyrosine/chemistry , Binding Sites , Glucosyltransferases/metabolism , Glycogen/biosynthesis , Glycogen/chemistry , Glycoproteins/metabolism , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Spectrophotometry, Infrared , Structure-Activity Relationship , Tyrosine/metabolism
15.
Phys Chem Chem Phys ; 19(19): 12013-12021, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28443888

ABSTRACT

Sugars are small carbohydrates which play numerous roles in living organisms such as storage of energy or as structural components. Modifications of specific sites within the glycan chain can modulate a carbohydrate's overall biological function as it happens with nucleic acids and proteins. Hence, identifying discrete carbohydrate modifications and understanding their biological effects is essential. A study of such processes requires of a deep knowledge of the interaction mechanism at the molecular level. Here, we use a combination of laser spectroscopy in jets and quantum mechanical calculations to characterize the interaction between phenyl-ß-d-glucopyranoside and N-methylacetamide as a model to understand the interaction between a sugar and a peptide bond. The most stable structure of the molecular aggregate shows that the main interaction between the peptide fragment and the sugar proceeds via a C[double bond, length as m-dash]OH-O2 hydrogen bond. A second conformer was also found, in which the peptide establishes a C[double bond, length as m-dash]OH-O6 hydrogen bond with the hydroxymethyl substituent of the sugar unit. All the conformers present an additional interaction point with the aromatic ring. This particular preference of the peptide for the hydroxyl close to the aromatic ring could explain why glycogenin uses tyrosine in order to convert glucose into glycogen by exposing the O4H hydroxyl group for the other glucoses for the polymerization to take place.


Subject(s)
Models, Chemical , Peptides/chemistry , Sugars/chemistry , Carbohydrates/chemistry , Polymerization , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...